213 research outputs found

    On processing development for fabrication of fiber reinforced composite, part 2

    Get PDF
    Fiber-reinforced composite laminates are used in many aerospace and automobile applications. The magnitudes and durations of the cure temperature and the cure pressure applied during the curing process have significant consequences for the performance of the finished product. The objective of this study is to exploit the potential of applying the optimization technique to the cure cycle design. Using the compression molding of a filled polyester sheet molding compound (SMC) as an example, a unified Computer Aided Design (CAD) methodology, consisting of three uncoupled modules, (i.e., optimization, analysis and sensitivity calculations), is developed to systematically generate optimal cure cycle designs. Various optimization formulations for the cure cycle design are investigated. The uniformities in the distributions of the temperature and the degree with those resulting from conventional isothermal processing conditions with pre-warmed platens. Recommendations with regards to further research in the computerization of the cure cycle design are also addressed

    Loss-resilient Coding of Texture and Depth for Free-viewpoint Video Conferencing

    Full text link
    Free-viewpoint video conferencing allows a participant to observe the remote 3D scene from any freely chosen viewpoint. An intermediate virtual viewpoint image is commonly synthesized using two pairs of transmitted texture and depth maps from two neighboring captured viewpoints via depth-image-based rendering (DIBR). To maintain high quality of synthesized images, it is imperative to contain the adverse effects of network packet losses that may arise during texture and depth video transmission. Towards this end, we develop an integrated approach that exploits the representation redundancy inherent in the multiple streamed videos a voxel in the 3D scene visible to two captured views is sampled and coded twice in the two views. In particular, at the receiver we first develop an error concealment strategy that adaptively blends corresponding pixels in the two captured views during DIBR, so that pixels from the more reliable transmitted view are weighted more heavily. We then couple it with a sender-side optimization of reference picture selection (RPS) during real-time video coding, so that blocks containing samples of voxels that are visible in both views are more error-resiliently coded in one view only, given adaptive blending will erase errors in the other view. Further, synthesized view distortion sensitivities to texture versus depth errors are analyzed, so that relative importance of texture and depth code blocks can be computed for system-wide RPS optimization. Experimental results show that the proposed scheme can outperform the use of a traditional feedback channel by up to 0.82 dB on average at 8% packet loss rate, and by as much as 3 dB for particular frames

    Comparison of the surface roughness of gypsum models constructed using various impression materials and gypsum products

    Get PDF
    AbstractBackground/purposeThis study compared the surface roughness of gypsum models constructed using various impression materials, gypsum products, and storage times before repouring.Materials and methodsThree alginate impression materials, four commercial silicone impression materials, and three types of gypsum product (MG crystal rock, Super hard stone, and MS plaster) were used. Impression materials were mixed and poured into five plastic rings (20 mm in diameter and 2 mm high) for each group, and the surfaces of the set gypsum product models of 63 groups, which were poured immediately, and 1 hour and 24 hours later, were assessed using a surface roughness tester. One-way ANOVA and Bonferroni's comparison tests were used for the statistical analyses.ResultsThe surface roughness: (1) was greater for most specimens constructed from alginate impression material (2.72 ± 0.45–7.42 ± 0.66 μm) than from silicone impression materials (1.86 ± 0.19–2.75 ± 0.44 μm); (2) differed with the type of gypsum product when using alginate impression materials (surface roughness of Super hard stone > MG crystal rock > MS plaster), but differed little for silicone impression materials; and (3) differed very little with the storage time before repouring.ConclusionThe surface roughness of stone models was mainly determined by the type of alginate impression material, and was less affected by the type of silicone rubber impression material or gypsum product, or the storage time before repouring

    Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin

    Get PDF
    Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion in the huntingtin gene (HTT) that results in a toxic gain of function in the mutant huntingtin protein (mHTT). Reducing the expression of mHTT is therefore an attractive therapy for HD. However, wild-type HTT protein is essential for development and has critical roles in maintaining neuronal health. Therapies for HD that reduce wild-type HTT may therefore generate unintended negative consequences. We have identified single-nucleotide polymorphism (SNP) targets in the human HD population for the disease-specific targeting of the HTT gene. Using primary cells from patients with HD and the transgenic YAC18 and BACHD mouse lines, we developed antisense oligonucleotide (ASO) molecules that potently and selectively silence mHTT at both exonic and intronic SNP sites. Modification of these ASOs with S-constrained-ethyl (cET) motifs significantly improves potency while maintaining allele selectively in vitro. The developed ASO is potent and selective for mHTT in vivo after delivery to the mouse brain. We demonstrate that potent and selective allele-specific knockdown of the mHTT protein can be achieved at therapeutically relevant SNP sites using ASOs in vitro and in vivo

    Muscle Expression of Mutant Androgen Receptor Accounts for Systemic and Motor Neuron Disease Phenotypes in Spinal and Bulbar Muscular Atrophy

    Get PDF
    SummaryX-linked spinal and bulbar muscular atrophy (SBMA) is characterized by adult-onset muscle weakness and lower motor neuron degeneration. SBMA is caused by CAG-polyglutamine (polyQ) repeat expansions in the androgen receptor (AR) gene. Pathological findings include motor neuron loss, with polyQ-AR accumulation in intranuclear inclusions. SBMA patients exhibit myopathic features, suggesting a role for muscle in disease pathogenesis. To determine the contribution of muscle, we developed a BAC mouse model featuring a floxed first exon to permit cell-type-specific excision of human AR121Q. BAC fxAR121 mice develop systemic and neuromuscular phenotypes, including shortened survival. After validating termination of AR121 expression and full rescue with ubiquitous Cre, we crossed BAC fxAR121 mice with Human Skeletal Actin-Cre mice. Muscle-specific excision prevented weight loss, motor phenotypes, muscle pathology, and motor neuronopathy and dramatically extended survival. Our results reveal a crucial role for muscle expression of polyQ-AR in SBMA and suggest muscle-directed therapies as effective treatments

    The breadth of primary care: a systematic literature review of its core dimensions

    Get PDF
    Background: Even though there is general agreement that primary care is the linchpin of effective health care delivery, to date no efforts have been made to systematically review the scientific evidence supporting this supposition. The aim of this study was to examine the breadth of primary care by identifying its core dimensions and to assess the evidence for their interrelations and their relevance to outcomes at (primary) health system level. Methods: A systematic review of the primary care literature was carried out, restricted to English language journals reporting original research or systematic reviews. Studies published between 2003 and July 2008 were searched in MEDLINE, Embase, Cochrane Library, CINAHL, King's Fund Database, IDEAS Database, and EconLit. Results: Eighty-five studies were identified. This review was able to provide insight in the complexity of primary care as a multidimensional system, by identifying ten core dimensions that constitute a primary care system. The structure of a primary care system consists of three dimensions: 1. governance; 2. economic conditions; and 3. workforce development. The primary care process is determined by four dimensions: 4. access; 5. continuity of care; 6. coordination of care; and 7. comprehensiveness of care. The outcome of a primary care system includes three dimensions: 8. quality of care; 9. efficiency care; and 10. equity in health. There is a considerable evidence base showing that primary care contributes through its dimensions to overall health system performance and health. Conclusions: A primary care system can be defined and approached as a multidimensional system contributing to overall health system performance and health

    Global sagittal alignment after surgery of right thoracic idiopathic scoliosis in adolescents and adults with and without thoracic hypokyphosis

    Get PDF
    The study procedure was conducted in accordance to guidelines approved by the institutional clinical research ethics committee (CREC No. 2016.722) and the Declaration of Helsinki. Written informed consent was obtained from all subjects and their parents before participating in this study.AbstractThis study aimed to characterize global sagittal alignment in adolescent idiopathic scoliosis (AIS) with normal kyphosis (NTK, kyphosis > 10°) and with thoracic hypokyphosis (THK, kyphosis < 10°), before and after posterior spinal fusion, and compare them with asymptomatic controls. 27 AIS girls and young adults with right thoracic curves were included (seventeen with age ≤ 18 years, then age > 21). Biplanar radiographies were acquired at baseline, immediate post-operatively, 1-year and 2-year follow-up, and 3D reconstruction of the spine and pelvis was performed. NTK and THK showed different global sagittal alignment, as well as differences compared to controls. AIS with THK at baseline had higher SVA/SFD (2.0 ± 2.9 vs − 0.4 ± 1.9; P < 0.05) and OD-HA (0.2 ± 1.4° vs − 1.3 ± 1.6°; P < 0.05) than controls, indicating that THK had compensated balance with unusual forward leaning posture. Immediately post-operation, SVA/SFD remained high (1.3 ± 3.0) while OD-HA reversed (− 1.2 ± 1.7°), indicating that THK patients had found partially compensated balance. After 2-yeas, both SVA/SFD (− 1.3 ± 2.1) and OD-HA (− 1.4 ± 0.9°) were normalized. The changes in global sagittal alignment and mechanism of balance are different in AIS with or without THK. As the head plays a critical role on balance during immediate and delayed post-operation, OD-HA can be complementary parameter for assessing global balance during post-operative follow-up of AIS patients with THK.The investigation was fully supported by a grant from the General Research Funding of Hong Kong (Project no. 14206716) (W.C.W.C.), and a funding from the BiomecAM Chair Program on Musculoskeletal Modeling (with the support of Société Générale, Covea, Yves Cotrel Foundation, ParisTech Foundation and Proteor) (C.V.)
    • …
    corecore