381 research outputs found

    Formulation/cure technology for ultrahigh molecular weight silphenylene-siloxane polymers

    Get PDF
    Molecular weights above one million were achieved for methylvinylsilphenylene-siloxane terpolymers using a two-stage polymerization technique which was successfully scaled up to 200 grams. The resulting polymer was vulcanized by two different formulations and compared to an identically formulated commercial methylvinyl silicone on the basis of ultimate strength, Young's modulus, percent elongation at failure, and tear strength. Relative thermal/oxidative stabilities of the elastomers were assessed by gradient and isothermal thermogravimetric analyses performed in both air and nitrogen. The experimental elastomer exhibited enhanced thermal/oxidative stability and possed equivalent or superior mechanical properties. The effect of variations in prepolymer molecular weight on mechanical properties was also investigated

    Ultra-high molecular weight silphenylene-siloxane polymers

    Get PDF
    Silphenylene-siloxane copolymers with molecular weights above one million were prepared using a two stage polymerization technique. The technique was successfully scaled up to produce 50 grams of this high polymer in a single run. The reactive monomer approach was also investigated using the following aminosilanes: bis(dimethylamino)dimethylsilane, N,N-bis(pyrrolidinyl)dimethylsilane and N,N-bis(gamma-butyrolactam)dimethylsilane). Thermal analyses were performed in both air and nitrogen. The experimental polymers decomposed at 540 to 562 C, as opposed to 408 to 426 C for commercial silicones. Differential scanning calorimetry showed a glass transition (Tg) at -50 to -55 C for the silphenylene-siloxane copolymer while the commercial silicones had Tg's at -96 to -112 C

    Field dependent effective masses in YbAl3_{3}

    Full text link
    We show for the intermediate valence compound YbAl3_{3} that the high field (40 B\lesssim B \lesssim 60T) effective masses measured by the de Haas-van Alphen experiment for field along the direction are smaller by approximately a factor of two than the low field masses. The field BB^{*} \sim 40T for this reduction is much smaller than the Kondo field BKkBTK/μBB_{K} \sim k_{B}T_{K}/\mu_{B} (TKT_{K}\sim 670K) but is comparable to the field kBTcoh/μBk_{B}T_{coh}/\mu_{B} where TcohT_{coh}\sim 40K is the temperature for the onset of Fermi liquid coherence. This suggests that the field scale BB^{*} does not arise from 4ff polarization but is connected with the removal of the anomalies that are known to occur in the Fermi liquid state of this compound.Comment: 7 pages plus 3 figures Submitted to PRL 9/12/0

    Anomalous f-electron Hall Effect in the Heavy-Fermion System CeTIn5_{5} (T = Co, Ir, or Rh)

    Full text link
    The in-plane Hall coefficient RH(T)R_{H}(T) of CeRhIn5_{5}, CeIrIn5_{5}, and CeCoIn5_{5} and their respective non-magnetic lanthanum analogs are reported in fields to 90 kOe and at temperatures from 2 K to 325 K. RH(T)R_{H}(T) is negative, field-independent, and dominated by skew-scattering above \sim 50 K in the Ce compounds. RH(H0)R_{H}(H \to 0) becomes increasingly negative below 50 K and varies with temperature in a manner that is inconsistent with skew scattering. Field-dependent measurements show that the low-T anomaly is strongly suppressed when the applied field is increased to 90 kOe. Measurements on LaRhIn5_{5}, LaIrIn5_{5}, and LaCoIn5_{5} indicate that the same anomalous temperature dependence is present in the Hall coefficient of these non-magnetic analogs, albeit with a reduced amplitude and no field dependence. Hall angle (θH\theta_{H}) measurements find that the ratio ρxx/ρxy=cot(θH)\rho_{xx}/\rho_{xy}=\cot(\theta_{H}) varies as T2T^{2} below 20 K for all three Ce-115 compounds. The Hall angle of the La-115 compounds follow this T-dependence as well. These data suggest that the electronic-structure contribution dominates the Hall effect in the 115 compounds, with ff-electron and Kondo interactions acting to magnify the influence of the underlying complex band structure. This is in stark contrast to the situation in most 4f4f and 5f5f heavy-fermion compounds where the normal carrier contribution to the Hall effect provides only a small, T-independent background to RH.R_{H}.Comment: 23 pages and 8 figure

    Calculation of Optical Conductivity of YbB12_{12} using Realistic Tight-Binding Model

    Get PDF
    Based on the previously reported tight-binding model fitted to the LDA+U band calculation, optical conductivity of the prototypical Kondo insulator YbB12_{12} is calculated theoretically. Many-body effects are taken into account by the self-consistent second order perturbation theory. The gross shape of the optical conductivity observed in experiments are well described by the present calculation, including their temperature-dependences.Comment: 6 pages, 7 figures, use jpsj2.cls, to appear in J. Phys. Soc. Jpn. Vol.73, No.10 (2004

    Coexistence of magnetism and superconductivity in CeRh1-xIrxIn5

    Full text link
    We report a thermodynamic and transport study of the phase diagram of CeRh1-xIrxIn5. Superconductivity is observed over a broad range of doping, 0.3 < x < 1, including a substantial range of concentration (0.3 < x <0.6) over which it coexists with magnetic order (which is observed for 0 < x < 0.6). The anomalous transition to zero resistance that is observed in CeIrIn5 is robust against Rh substitution. In fact, the observed bulk Tc in CeRh0.5Ir0.5In5 is more than double that of CeIrIn5, whereas the zero-resistance transition temperature is relatively unchanged for 0.5 < x < 1

    Evolution of Hall coefficient in two-dimensional heavy fermion CeCoIn5_5

    Full text link
    We report on the pressure dependence of the Hall coefficient RHR_H in quasi-2D heavy fermion CeCoIn5_5. At ambient pressure, below a temperature associated with the emergence of non-Fermi liquid properties, RHR_H is anomalously enhanced. We found that the restoration of the Fermi liquid state with applied pressure leads to a gradual suppression of this dramatic enhancement. Moreover, the enhancement in RHR_H was found to be confined to an intermediate temperature window, where inelastic electron-electron scattering is dominant. Our results strongly support the presence of cold and hot spots on the Fermi surface probably due to anisotropic scattering by antiferromagnetic fluctuations, which may also prove relevant for the debate on the anomalous normal-state properties of high-TcT_c cuprates.Comment: 9 pages, 5 fiqures, to be published in J. Phys. Soc. Jp

    High pressure investigation of the heavy-fermion antiferromagnet U_3Ni_5Al_19

    Full text link
    Measurements of magnetic susceptibility, specific heat, and electrical resistivity at applied pressures up to 55 kbar have been carried out on single crystals of the heavy-fermion antiferromagnet U_3Ni_5Al_19, which crystallizes in the Gd_3Ni_5Al_19 orthorhombic structure with two inequivalent U sites. At ambient pressure, a logarithmic T-dependence of the specific heat and T-linear electrical resistivity below 5 K indicates non-Fermi liquid (NFL) behavior in the presence of bulk antiferromagnetic order at T_N=23 K. Electrical resistivity measurements reveal a crossover from non-Fermi liquid to Fermi liquid behavior at intermediate pressures between 46 kbar and 51 kbar, followed by a return to NFL T^{3/2} behavior at higher pressures. These results provide evidence for an ambient pressure quantum critical point and an additional antiferromagnetic instability at P_c=60 kbar.Comment: 12 pages, 5 figure

    Yb-Yb correlations and crystal-field effects in the Kondo insulator YbB12 and its solid solutions

    Full text link
    We have studied the effect of Lu substitution on the spin dynamics of the Kondo insulator YbB12 to clarify the origin of the spin-gap response previously observed at low temperature in this material. Inelastic neutron spectra have been measured in Yb1-xLuxB12 compounds for four Lu concentrations x = 0, 0.25, 0.90 and 1.0. The data indicate that the disruption of coherence on the Yb sublattice primarily affects the narrow peak structure occurring near 15-20 meV in pure YbB12, whereas the spin gap and the broad magnetic signal around 38 meV remain almost unaffected. It is inferred that the latter features reflect mainly local, single-site processes, and may be reminiscent of the inelastic magnetic response reported for mixed-valence intermetallic compounds. On the other hand, the lower component at 15 meV is most likely due to dynamic short-range magnetic correlations. The crystal-field splitting in YbB12 estimated from the Er3+ transitions measured in a Yb0.9Er0.1B12 sample, has the same order of magnitude as other relevant energy scales of the system and is thus likely to play a role in the form of the magnetic spectral response.Comment: 16 pages in pdf format, 9 figures. v. 2: coauthor list updated; extra details given in section 3.2 (pp. 6-7); one reference added; fig. 5 axis label change

    Two energy scales and slow crossover in YbAl3

    Full text link
    Experimental results for the susceptibility, specific heat, 4f occupation number, Hall effect and magnetoresistance for single crystals of YbAl3_{3} show that, in addition to the Kondo energy scale kBTKk_{B}T_{K} % \sim 670K, there is a low temperature scale Tcoh<50T_{coh}<50K for the onset of coherence. Furthermore the crossover from the low temperature Fermi liquid regime to the high temperature local moment regime is slower than predicted by the Anderson impurity model. These effects may reflect the behavior of the Anderson Lattice in the limit of low conduction electron density.Comment: Ten pages, including three figure
    corecore