21 research outputs found

    Diagnostic validity of the Basler Vegetative State Assessment - BAVESTA

    Get PDF
    Introduction: Clinical assessments should meet the general psychometric properties of reliability and validity. Furthermore there are requirements in matters of diagnostic validity and usability. In regards to patients with severe brain damage, both issues can mainly be implemented by detecting and assessing returning abilities as early as possible, in order to use them for treatment planning. Main aim of this article is to investigate whether the newly developed and validated interprofessional Basel Vegetative State Assessment (BAVESTA) meets these practice criteria. Method: Data were collected as part of validity assessment of BAVESTA. Using the Glasgow Coma Scale as a reference, predictive parameters and measures of effect are calculated. Moreover, expert users were interviewed and results are presented in a descriptive way. Results: With a sensitivity of 0.84 and a specificity of 0.85, the BAVESTA can be regarded as suitable in differentiating between vegetative state and further states of remission such as the minimally conscious state. Expert users regard BAVESTA as eligible for mapping rehabilitative process of patients with severely impaired consciousness. They agree upon the fact that all relevant areas are covered by BAVESTA. Discussion: The BAVESTA displays high levels of differentiation, in regards to both sensitivity and specificity. However, measures of effect ought generally to be regarded with caution, as reference standards have not been developed for the area of rehabilitation. Considering time expenditure, BAVESTA is rated as only marginally feasible by expert users. It should be continued to investigate BAVESTA in regards to its diagnostic quality, integrating electrophysical diagnostic tools as reference standards

    Factors affecting the mechanical and geometrical properties of electrostatically flocked pure chitosan fiber scaffolds

    Get PDF
    The field of articular cartilage tissue engineering has developed rapidly, and chitosan has become a promising material for scaffold fabrication. For this paper, wet-spun biocompatible chitosan filament yarns were converted into short flock fibers and subsequently electrostatically flocked onto a chitosan substrate, resulting in a pure, highly open, porous, and biodegradable chitosan scaffold. Analyzing the wet-spinning of chitosan revealed its advantages and disadvantages with respect to the fabrication of the fiber-based chitosan scaffolds. The scaffolds were prepared using varying processing parameters and were analyzed in regards to their geometrical and mechanical properties. It was found that the pore sizes were adjustable between 65 and 310 µm, and the compressive strength was in the range 13–57 kPa

    Thermal and oxidation resistant barrier on carbon fiber with Si and Si–Ti based pre-ceramic coatings for high temperature application

    Get PDF
    Carbon fiber (CF) must be protected from thermal oxidation for high temperature application because of its low thermo-oxidative stability above 450°C in air. CF is now increasingly being used as a reinforcing material in the construction industry. A thermal and oxidation resistant coating is necessary for CF-reinforced concrete (CFRC) composites in order to satisfy a high level of safety standard in the case of fire. New types of pre-ceramic coatings, such as Tyranno® polymer (Si–Ti based pre-ceramic) and SiO₂ sol–gel, have been deposited on CF filament yarn by means of a wet chemical continuous dip coating method. The results of surface analyses, e.g. scanning electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy, showed the changes in topographical properties of CF caused by the coatings. Thermogravimetric analysis proved that the high temperature (up to 800°C) oxidation stability of CF was considerably improved due to the coatings. Tensile test results indicated that the strength of CF yarn at 20°C was increased by up to 80% with the coatings. Thermo-mechanical properties were also enhanced up to 600°C. CF yarn retains its original strength and elasticity modulus, i.e. the stiffness at 700°C, with a Tyranno® polymer coating

    Adhesion problematics and curing kinetics in a thermosetting matrix for stitch-free non-crimp fabric

    Get PDF
    Non-crimp fabrics (NCF) have become established in the fields of the automotive, aircraft, and wind power industries, which has led to an increasing demand of fiber plastic composites. In order to utilize the known excellent load-bearing properties of NCF and also to reduce the related disadvantages such as fiber undulation caused by stitching yarn, inclusions of resin and filament breakage by the stitch-bonding process have to be addressed. Hence, an alternative manufacturing technology is presented. This technology is defined by the punctiform application of a polyester hot melt adhesive to enable different geometries of NCF and ensure the position of the high-performance fiber in the load direction. The new manufacturing process, on the one hand, demands new testing methods to investigate the adhesion between the used adhesive and highperformance fibers, while, on the other, the surface of the adherend (carbon fiber) needs to be improved. Oxyfluorination is used here for the surface modification. Different tests such as peel test, shear test and transverse tensile test were developed and evaluated with different adhesives and high-performance yarns based on glass and carbon. The influence of the used copolyester hot melt on the curing kinetics of an epoxy matrix was investigated by differential scanning calorimetry using quasi-isothermal and non-isothermal measurements. In addition, the interface between the thermoplastic epoxy resin and the copolyester hot melt was analyzed by scanning electron microscopy

    Designing UV/VIS/NIR-sensitive shape memory filament yarns

    Get PDF
    A novel laser light-sensitive yarn based on a thermoplastic polyester–urethane (TPU) has been prepared and analyzed. Since the thermosensitive shape memory polymer yarn (SMP yarn) has been functionalized using nanoscale heat sources exhibiting light-induced heat generation, the yarn is capable of an optically triggered shape memory effect (SME). For this purpose gold nanorods (GNR) have been employed. In addition to the incorporation of GNR into the yarn, a coating of GNR on the yarn is also proposed, applied by a semi-continuous layer-by-layer (LBL) technique. The SME of the functionalized yarns can be triggered either thermally or optically and has a strain recovery of almost 100%. The light-induced SME is triggered by a low-powered laser (808 nm, 2 W for a GNR-incorporated and 1W for a GNRcoated TPU yarn). A reference yarn without GNR showed no significant effect. An adaptive structure featuring a SMPyarn backed shape memory effect has been proposed and demonstrated

    Silvering of three-dimensional polyethylene terephthalate textile material by means of wet-chemical processes

    Get PDF
    The aim of this research is to develop a wet-chemical silvering method for a three-dimensional (3D) textile material made of polyethylene terephthalate (PET) to prevent and eliminate biological contaminants in drinking water and other liquid-containing systems. Three-dimensional textile fabrics are particularly well-suited as silvered disinfection materials in water systems, because they have 3D structures, pressure-elastic textile design, and provide large contact areas. Furthermore, water can easily be passed through the structure. The developed wet-chemical procedures are based on aminosilane, which consists of at least two amine groups and is well-suited to form a silver diamine complex. The silvered textile material was coated with cationic silver. After the chemical reduction, the cationic silver turns into metallic silver on the surface of PET spacer fabrics. The surface morphology of silver-coated spacer fabrics was analyzed and the uniform silver layer on the PET fiber surface was found. X-ray diffraction and energy-dispersive X-ray spectroscopy analysis spectrums showed that the silver was immobilized on the PET fiber surface. The layer thickness and the silver amount were also determined. The silvered spacer fabrics can be used in sealing and/or cooling water systems; therefore, the silver ion release in water was analyzed. Furthermore, textile physical tests for the measurement of breaking force and elongation were carried out. No significant change in breaking force and elongation was observed after silvering of PET spacer fabric

    Effects of (Oxy-)Fluorination on Various High-Performance Yarns

    No full text
    In this work, typical high-performance yarns are oxy-fluorinated, such as carbon fibers, ultra-high-molecular-weight polyethylene, poly(p-phenylene sulfide) and poly(p-phenylene terephthalamide). The focus is on the property changes of the fiber surface, especially the wetting behavior, structure and chemical composition. Therefore, contact angle, XPS and tensile strength measurements are performed on treated and untreated fibers, while SEM is utilized to evaluate the surface structure. Different results for the fiber materials are observed. While polyethylene exhibits a relevant impact on both surface and bulk properties, polyphenylene terephthalamide and polyphenylene sulfide are only affected slightly by (oxy-)fluorination. The wetting of carbon fiber needs higher treatment intensities, but in contrast to the organic fibers, even its textile-physical properties are enhanced by the treatment. Based on these findings, the capability of (oxy-)fluorination to improve the adhesion of textiles in fiber-reinforced composite materials can be derived

    Surface Treatment of Carbon Fibers by Oxy-Fluorination

    Get PDF
    In this paper, the oxy-fluorination process and the influence of different concentrations of fluorine and oxygen in the gas phase on the physicochemical properties of polyacrylonitrile(PAN)-based carbon fibers are described. The properties of the treated carbon structures are determined by zeta potential and tensiometry measurements. In addition, changes in surface composition and morphology are investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Adhesion properties are characterized by the single fiber pull-out (SFPO) test. Furthermore, changes in intrinsic properties are described by means of tensile and density measurements. After a primary desizing effect by oxy-fluorination, an increased number of oxygen-containing surface functional groups could be detected, which led to more debonding work in SFPOs with an epoxy-based matrix. It was also shown that the polar surface energy grows with rising fluorine concentration in the reaction gas mixture. In addition, a minor increase of ~10% in the maximum strength of PAN-based carbon fibers is detected by single fiber tensile measurements after oxy-fluorination with a fluorine content of 5% in the reaction mixture
    corecore