366 research outputs found

    Genetic risk factors and Mendelian randomization in cardiovascular disease

    Get PDF
    Cardiovascular disease encompasses several diverse pathological states that place a heavy burden on individual and population health. The aetiological basis of many cardiovascular disorders is not fully understood. Growing knowledge of the genetic architecture underlying coronary heart disease, stroke, cardiac arrhythmias and peripheral vascular disease has confirmed some suspected causal pathways in these conditions but also uncovered many previously unknown mechanisms. Here, we consider the contribution of genetics to the understanding of cardiovascular disease risk. We evaluate the utility and relevance of findings from genome-wide association studies and explore the role that Mendelian randomisation has to play in exploiting these. Mendelian randomisation permits robust causal inference in an area of research where this has been hampered by bias and confounding in observational studies. In doing so, it provides evidence for causal processes in cardiovascular disease that could represent novel targets for much-needed new drugs for disease prevention and treatment

    Circulating Apolipoprotein E Concentration and Cardiovascular Disease Risk: Meta-analysis of Results from Three Studies

    Get PDF
    Background: The association of APOE genotype with circulating apolipoprotein E (ApoE) concentration and cardiovascular disease (CVD) risk is well established. However, the relationship of circulating ApoE concentration and CVD has received little attention. Methods and Findings: To address this, we measured circulating ApoE concentration in 9,587 individuals (with 1,413 CVD events) from three studies with incident CVD events: two population-based studies, the English Longitudinal Study of Ageing (ELSA) and the men-only Northwick Park Heart Study II (NPHSII), and a nested sub-study of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). We examined the association of circulating ApoE with cardiovascular risk factors in the two population-based studies (ELSA and NPHSII) and the relationship between ApoE concentration and coronary heart disease and stroke in all three studies. Analyses were carried out within study, and, where appropriate, pooled effect estimates were derived using meta-analysis. In the population-based samples, circulating ApoE was associated with systolic blood pressure (correlation coefficient 0.08, p < 0.001, in both ELSA and NPHSII), total cholesterol (correlation coefficient 0.46 and 0.34 in ELSA and NPHSII, respectively; both p < 0.001), low-density lipoprotein cholesterol (correlation coefficient 0.30 and 0.14, respectively; both p < 0.001), high-density lipoprotein (correlation coefficient 0.16 and ?0.14, respectively; both p < 0.001), and triglycerides (correlation coefficient 0.43 and 0.46, respectivly; both p < 0.001). In NPHSII, ApoE concentration was additionally associated with apolipoprotein B (correlation coefficient 0.13, p = 0.001) and lipoprotein(a) (correlation coefficient ?0.11, p < 0.001). In the pooled analysis of ASCOT, ELSA, and NPHSII, there was no association of ApoE with CVD events; the odds ratio (OR) for CVD events per 1-standard-deviation higher ApoE concentration was 1.02 (95% CI 0.96, 1.09). After adjustment for cardiovascular risk factors, the OR for CVD per 1-standard-deviation higher ApoE concentration was 0.97 (95% CI 0.82, 1.15). Limitations of these analyses include a polyclonal method of ApoE measurement, rather than isoform-specific measurement, a moderate sample size (although larger than any other study to our knowledge and with a long lag between ApoE measures), and CVD events that may attenuate an effect. Conclusions: In the largest study to date on this question, we found no evidence of an association of circulating ApoE concentration with CVD events. The established association of APOE genotype with CVD events may be explained by isoform-specific functions as well as other mechanisms, rather than circulating concentrations of ApoE

    LDL-C Concentrations and the 12-SNP LDL-C Score for Polygenic Hypercholesterolaemia in Self-Reported South Asian, Black and Caribbean Participants of the UK Biobank.

    Get PDF
    Background: Monogenic familial hypercholesterolaemia (FH) is an autosomal dominant disorder characterised by elevated low-density lipoprotein cholesterol (LDL-C) concentrations due to monogenic mutations in LDLR, APOB, PCSK9, and APOE. Some mutation-negative patients have a polygenic cause for elevated LDL-C due to a burden of common LDL-C-raising alleles, as demonstrated in people of White British (WB) ancestry using a 12-single nucleotide polymorphism (SNP) score. This score has yet to be evaluated in people of South Asian (SA), and Black and Caribbean (BC) ethnicities. Objectives: 1) Compare the LDL-C and 12-SNP score distributions across the three major ethnic groups in the United Kingdom: WB, SA, and BC individuals; 2) compare the association of the 12-SNP score with LDL-C in these groups; 3) evaluate ethnicity-specific and WB 12-SNP score decile cut-off values, applied to SA and BC ethnicities, in predicting LDL-C concentrations and hypercholesterolaemia (LDL-C>4.9 mmol/L). Methods: The United Kingdom Biobank cohort was used to analyse the LDL-C (adjusted for statin use) and 12-SNP score distributions in self-reported WB (n = 353,166), SA (n = 7,016), and BC (n = 7,082) participants. To evaluate WB and ethnicity-specific 12-SNP score deciles, the total dataset was split 50:50 into a training and testing dataset. Regression analyses (logistic and linear) were used to analyse hypercholesterolaemia (LDL-C>4.9 mmol/L) and LDL-C. Findings: The mean (±SD) measured LDL-C differed significantly between the ethnic groups and was highest in WB [3.73 (±0.85) mmol/L], followed by SA [3.57 (±0.86) mmol/L, p < 2.2 × 10-16], and BC [3.42 (±0.90) mmol/L] participants (p < 2.2 × 10-16). There were significant differences in the mean (±SD) 12-SNP score between WB [0.90 (±0.23)] and BC [0.72 (±0.25), p < 2.2 × 10-16], and WB and SA participants [0.86 (±0.19), p < 2.2 × 10-16]. In all three ethnic groups the 12-SNP score was associated with measured LDL-C [R 2 (95% CI): WB = 0.067 (0.065-0.069), BC = 0.080 (0.063-0.097), SA = 0.027 (0.016-0.038)]. The odds ratio and the area under the curve for hypercholesterolaemia were not statistically different when applying ethnicity-specific or WB deciles in all ethnic groups. Interpretation: We provide information on the differences in LDL-C and the 12-SNP score distributions in self-reported WB, SA, and BC individuals of the United Kingdom Biobank. We report the association between the 12-SNP score and LDL-C in these ethnic groups. We evaluate the performance of ethnicity-specific and WB 12-SNP score deciles in predicting LDL-C and hypercholesterolaemia

    Triglyceride-containing lipoprotein sub-fractions and risk of coronary heart disease and stroke: A prospective analysis in 11,560 adults

    Get PDF
    AIMS: Elevated low-density lipoprotein cholesterol (LDL-C) is a risk factor for cardiovascular disease; however, there is uncertainty about the role of total triglycerides and the individual triglyceride-containing lipoprotein sub-fractions. We measured 14 triglyceride-containing lipoprotein sub-fractions using nuclear magnetic resonance and examined associations with coronary heart disease and stroke. METHODS: Triglyceride-containing sub-fraction measures were available in 11,560 participants from the three UK cohorts free of coronary heart disease and stroke at baseline. Multivariable logistic regression was used to estimate the association of each sub-fraction with coronary heart disease and stroke expressed as the odds ratio per standard deviation increment in the corresponding measure. RESULTS: The 14 triglyceride-containing sub-fractions were positively correlated with one another and with total triglycerides, and inversely correlated with high-density lipoprotein cholesterol (HDL-C). Thirteen sub-fractions were positively associated with coronary heart disease (odds ratio in the range 1.12 to 1.22), with the effect estimates for coronary heart disease being comparable in subgroup analysis of participants with and without type 2 diabetes, and were attenuated after adjustment for HDL-C and LDL-C. There was no evidence for a clear association of any triglyceride lipoprotein sub-fraction with stroke. CONCLUSIONS: Triglyceride sub-fractions are associated with increased risk of coronary heart disease but not stroke, with attenuation of effects on adjustment for HDL-C and LDL-C

    Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation

    Get PDF
    The force-dependent interaction between talin and vinculin plays a crucial role in the initiation and growth of focal adhesions. Here we use magnetic tweezers to characterise the mechano-sensitive compact N-terminal region of the talin rod, and show that the three helical bundles R1-R3 in this region unfold in three distinct steps consistent with the domains unfolding independently. Mechanical stretching of talin R1-R3 enhances its binding to vinculin and vinculin binding inhibits talin refolding after force is released. Mutations that stabilize R3 identify it as the initial mechano-sensing domain in talin, unfolding at ~5 pN, suggesting that 5 pN is the force threshold for vinculin binding and adhesion progression

    Composition of Clean Marine Air and Biogenic Influences on VOCs during the MUMBA Campaign

    Get PDF
    Volatile organic compounds (VOCs) are important precursors to the formation of ozone and fine particulate matter, the two pollutants of most concern in Sydney, Australia. Despite this importance, there are very few published measurements of ambient VOC concentrations in Australia. In this paper, we present mole fractions of several important VOCs measured during the campaign known as MUMBA (Measurements of Urban, Marine and Biogenic Air) in the Australian city of Wollongong (34°S). We particularly focus on measurements made during periods when clean marine air impacted the measurement site and on VOCs of biogenic origin. Typical unpolluted marine air mole fractions during austral summer 2012-2013 at latitude 34°S were established for CO2 (391.0 ± 0.6 ppm), CH4 (1760.1 ± 0.4 ppb), N2O (325.04 ± 0.08 ppb), CO (52.4 ± 1.7 ppb), O3 (20.5 ± 1.1 ppb), acetaldehyde (190 ± 40 ppt), acetone (260 ± 30 ppt), dimethyl sulphide (50 ± 10 ppt), benzene (20 ± 10 ppt), toluene (30 ± 20 ppt), C8H10 aromatics (23 ± 6 ppt) and C9H12 aromatics (36 ± 7 ppt). The MUMBA site was frequently influenced by VOCs of biogenic origin from a nearby strip of forested parkland to the east due to the dominant north-easterly afternoon sea breeze. VOCs from the more distant densely forested escarpment to the west also impacted the site, especially during two days of extreme heat and strong westerly winds. The relative amounts of different biogenic VOCs observed for these two biomes differed, with much larger increases of isoprene than of monoterpenes or methanol during the hot westerly winds from the escarpment than with cooler winds from the east. However, whether this was due to different vegetation types or was solely the result of the extreme temperatures is not entirely clear. We conclude that the clean marine air and biogenic signatures measured during the MUMBA campaign provide useful information about the typical abundance of several key VOCs and can be used to constrain chemical transport model simulations of the atmosphere in this poorly sampled region of the world. © 2019 The Author
    corecore