260 research outputs found

    Segregation of in to dislocations in InGaN

    No full text
    Dislocations are one-dimensional topological defects that occur frequently in functional thin film materials and that are known to degrade the performance of InxGa1-xN-based optoelectronic devices. Here, we show that large local deviations in alloy composition and atomic structure are expected to occur in and around dislocation cores in InxGa1-xN alloy thin films. We present energy-dispersive X-ray spectroscopy data supporting this result. The methods presented here are also widely applicable for predicting composition fluctuations associated with strain fields in other inorganic functional material thin films

    Dislocation core structures in (0001) InGaN

    Get PDF
    Threading dislocation core structures in c-plane GaN and InxGa1−xN (0.057 ≤ x ≤ 0.20) films were investigated by aberration-corrected scanning transmission electron microscopy. a-type dislocations are unaffected by alloying with indium and have a 5/7-atom ring core structure in both GaN and InxGa1−xN. In contrast, the dissociation lengths of (a + c)-type dislocations are reduced, and new 7/4/9-atom ring and 7/4/8/5-atom ring core structures were observed for the dissociated (a + c)-type dislocations in InxGa1−xN, which is associated with the segregation of indium near (a + c)-type and c-type dislocation cores in InxGa1−xN, consistent with predictions from atomistic Monte Carlo simulations.This work was funded in part by the Cambridge Commonwealth Trust, St. John’s College and the EPSRC (grant number EP/I012591/1). MAM acknowledges support from the Royal Society through a University Research Fellowship. Additional support was provided by the EPSRC (Supplementary data for EPSRC [49] is available) through the UK National Facility for Aberration-Corrected STEM (SuperSTEM). The Titan 80-200kV ChemiSTEM™ was funded through HM Government (UK) and is associated with the capabilities of the University of Manchester Nuclear Manufacturing (NUMAN) capabilities. SJH acknowledges funding from the Defence Threat Reduction Agency (DTRA) USA (grant number HDTRA1-12-1-0013). The authors also acknowledge C. M. McGilvery and A. Kovacs for helpful discussions.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by AIP

    Carrier localization in the vicinity of dislocations in InGaN

    Get PDF
    We present a multi-microscopy study of dislocations in InGaN, whereby the same threading dislocation was observed under several microscopes (atomic force microscopy, scanning electron microscopy, cathodoluminescence imaging and spectroscopy, transmission electron microscopy), and its morphological optical and structural properties directly correlated. We achieved this across an ensemble of defects large enough to be statistically significant. Our results provide evidence that carrier localization occurs in the direct vicinity of the dislocation through the enhanced formation of In-N chains and atomic condensates, thus limiting non-radiative recombination of carriers at the dislocation core. We highlight that the localization properties in the vicinity of threading dislocations arise as a consequence of the strain field of the individual dislocation and the additional strain field building between interacting neighboring dislocations. Our study therefore suggests that careful strain and dislocation distribution engineering may further improve the resilience of InGaN-based devices to threading dislocations. Besides providing a new understanding of dislocations in InGaN, this paper presents a proof-of-concept for a methodology which is relevant to many problems in materials science.This project is funded in part by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 279361 (MACONS). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483-ESTEEM2 (Integrated Infrastructure InitiativeI3). F.M. would also like to acknowledge the financial support from EPSRC Doctoral Prize Awards and Cambridge Philosophical Society. M.H. would like to acknowledge support from the Lindemann Fellowship

    Alloy fluctuations at dislocations in III-Nitrides: identification and impact on optical properties

    Get PDF
    We investigated alloy fluctuations at dislocations in III-Nitride alloys (InGaN and AlGaN). We found that in both alloys, atom segregation (In segregation in InGaN and Ga segregation in AlGaN) occurs in the tensile part of dislocations with an edge component. In InGaN, In atom segregation leads to an enhanced formation of In-N chains and atomic condensates which act as carrier localization centers. This feature results in a bright spot at the position of the dislocation in the CL images, suggesting that non-radiative recombination at dislocations is impaired. On the other hand, Ga atom segregation at dislocations in AlGaN does not seem to noticeably affect the intensity recorded by CL at the dislocation. This study sheds light on why InGaN-based devices are more resilient to dislocations than AlGaN-based devices. An interesting approach to hinder non-radiative recombination at dislocations may therefore be to dope AlGaN with In.ER

    Optical and structural properties of dislocations in InGaN

    Get PDF
    Threading dislocations in thick layers of InxGa1−xN (5% < x < 15%) have been investigated by means of cathodoluminescence, time-resolved cathodoluminescence, and molecular dynamics. We show that indium atoms segregate near dislocations in all the samples. This promotes the formation of In-N-In chains and atomic condensates, which localize carriers and hinder nonradiative recombination at dislocations. We note, however, that the dark halo surrounding the dislocations in the cathodoluminescence image becomes increasingly pronounced as the indium fraction of the sample increases. Using transmission electron microscopy, we attribute the dark halo to a region of lower indium content formed below the facet of the V-shaped pit that terminates the dislocation in low composition samples (x < 12%). For x > 12%, the facets of the V-defect featured dislocation bundles instead of the low indium fraction region. In this sample, the origin of the dark halo may relate to a compound effect of the dislocation bundles, of a variation of surface potential, and perhaps, of an increase in carrier diffusion length.ER-C Lindemann Trust Fellowshi

    Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin

    Get PDF
    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters

    A novel class of microRNA-recognition elements that function only within open reading frames.

    Get PDF
    MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells

    Recruiting to a large-scale physical activity randomised controlled trial – experiences with the gift of hindsight

    Get PDF
    Background: Recruitment issues continue to impact a large number of trials. Sharing recruitment information is vital to support researchers to accurately predict recruitment and to manage the risk of poor recruitment during study design and implementation. The purpose of this paper is to build on the knowledge available to researchers on recruiting to community based trials. Methods: A critical commentary of the recruitment challenges encountered during the ‘Booster’ Study, a randomised controlled trial which investigated the effectiveness of a Motivational Interviewing style intervention on the maintenance of physical activity. An overview of recruitment is provided, as well as strategies employed to recruit prospective participants and possible barriers to recruitment. Results: Two hundred and eighty two people, 47% of the original target, were recruited through mail-outs with secondary recruitment pathways yielding no additional participants. The research team encountered problems re-contacting interested participants and providing study materials in non-English languages. A lower response rate to the mail-out and a greater number of non-contactable participants in the full study compared to the pilot study resulted in a smaller pool of eligible participants from the brief intervention eligible for recruitment into the RCT. Conclusion: Despite utilising widely accepted recruitment strategies and incorporating new recruitment tactics in response to challenges, the ‘Booster’ study failed to randomise a sufficient number of participants. Recruitment to community based, behavioural interventions may face different challenges than trials based in clinical or primary care pathways. Specific challenges posed by the complexity of the study design and problems with staffing and resources were exacerbated by the need to revise upwards the number of mailed invitations as a result of the pilot study. Researchers should ensure study design is facilitative to recruitment and consider the implications of changing recruitment on the operational aspects of the trial. Where possible the impact of new strategies should be measured, and recruitment successes and challenges shared with those planning similar studies. The study was a registered controlled trial (ISRCTN56495859 12 Feb 2009; NCT00836459 03 Feb 2009) KEYWORDS: Recruitment, Physical Activity, mail-outs, BOOSTER, behaviour maintenance
    corecore