207 research outputs found

    What drives the latitudinal gradient in open-ocean surface dissolved inorganic carbon concentration?

    Get PDF
    Previous work has not led to a clear understanding of the causes of spatial pattern in global surface ocean dissolved inorganic carbon (DIC), which generally increases polewards. Here, we revisit this question by investigating the drivers of observed latitudinal gradients in surface salinity-normalized DIC (nDIC) using the Global Ocean Data Analysis Project version 2 (GLODAPv2) database. We used the database to test three different hypotheses for the driver producing the observed increase in surface nDIC from low to high latitudes. These are (1) sea surface temperature, through its effect on the CO2 system equilibrium constants, (2) salinity-related total alkalinity (TA), and (3) highlatitude upwelling of DIC- and TA-rich deep waters. We find that temperature and upwelling are the two major drivers. TA effects generally oppose the observed gradient, except where higher values are introduced in upwelled waters. Temperature-driven effects explain the majority of the surface nDIC latitudinal gradient (182 of the 223 μmol kg1 increase from the tropics to the high-latitude Southern Ocean). Upwelling, which has not previously been considered as a major driver, additionally drives a substantial latitudinal gradient. Its immediate impact, prior to any induced air-sea CO2 exchange, is to raise Southern Ocean nDIC by 220 μmol kg1 above the average low-latitude value. However, this immediate effect is transitory. The long-term impact of upwelling (brought about by increasing TA), which would persist even if gas exchange were to return the surface ocean to the same CO2 as without upwelling, is to increase nDIC by 74 μmol kg1 above the low-latitude average

    An internally consistent dataset of δ13C-DIC in the North Atlantic Ocean – NAC13v1

    Get PDF
    The stable carbon isotope composition of dissolved inorganic carbon (δ13C-DIC) can be used to quantify fluxes within the carbon system. For example, knowing the δ13C signature of the inorganic carbon pool can help in describing the amount of anthropogenic carbon in the water column. The measurements can also be used for evaluating modeled carbon fluxes, for making basin-wide estimates of anthropogenic carbon, and for studying seasonal and interannual variability or decadal trends in interior ocean biogeochemistry. For all these purposes, it is not only important to have a sufficient amount of data, but these data must also be internally consistent and of high quality. In this study, we present a δ13C-DIC dataset for the North Atlantic which has undergone secondary quality control. The data originate from oceanographic research cruises between 1981 and 2014. During a primary quality control step based on simple range tests, obviously bad data were flagged. In a second quality control step, biases between measurements from different cruises were quantified through a crossover analysis using nearby data of the respective cruises, and values of biased cruises were adjusted in the data product. The crossover analysis was possible for 24 of the 32 cruises in our dataset, and adjustments were applied to 11 cruises. The internal accuracy of this dataset is 0.017 ‰

    Deterministic delivery of remote entanglement on a quantum network

    Full text link
    Large-scale quantum networks promise to enable secure communication, distributed quantum computing, enhanced sensing and fundamental tests of quantum mechanics through the distribution of entanglement across nodes. Moving beyond current two-node networks requires the rate of entanglement generation between nodes to exceed their decoherence rates. Beyond this critical threshold, intrinsically probabilistic entangling protocols can be subsumed into a powerful building block that deterministically provides remote entangled links at pre-specified times. Here we surpass this threshold using diamond spin qubit nodes separated by 2 metres. We realise a fully heralded single-photon entanglement protocol that achieves entangling rates up to 39 Hz, three orders of magnitude higher than previously demonstrated two-photon protocols on this platform. At the same time, we suppress the decoherence rate of remote entangled states to 5 Hz by dynamical decoupling. By combining these results with efficient charge-state control and mitigation of spectral diffusion, we are able to deterministically deliver a fresh remote state with average entanglement fidelity exceeding 0.5 at every clock cycle of \sim100 ms without any pre- or post-selection. These results demonstrate a key building block for extended quantum networks and open the door to entanglement distribution across multiple remote nodes.Comment: v2 - updated to include relevant citatio

    Characterization of a Time-Domain Dual Lifetime Referencing pCO2 Optode and Deployment as a High-Resolution Underway Sensor across the High Latitude North Atlantic Ocean

    Get PDF
    The ocean is a major sink for anthropogenic carbon dioxide (CO2), with the CO2 uptake causing changes to ocean chemistry. To monitor these changes and provide a chemical background for biological and biogeochemical studies, high quality partial pressure of CO2 (pCO2) sensors are required, with suitable accuracy and precision for ocean measurements. Optodes have the potential to measure in situ pCO2 without the need for wet chemicals or bulky gas equilibration chambers that are typically used in pCO2 systems. However, optodes are still in an early developmental stage compared to more established equilibrator-based pCO2 systems. In this study, we performed a laboratory-based characterization of a time-domain dual lifetime referencing pCO2 optode system. The pCO2 optode spot was illuminated with low intensity light (0.2mA, 0.72 mW) to minimize spot photobleaching. The spot was calibrated using an experimental gas calibration rig prior to deployment, with a determined response time (t63) of 50 s at 25◦C. The pCO2 optode was deployed as an autonomous shipboard underway system across the high latitude North Atlantic Ocean with a resolution of ca.10 measurements per hour. The optode data was validated with a secondary shipboard equilibrator-based infrared pCO2 instrument, and pCO2 calculated fromdiscrete samples of dissolved inorganic carbon and total alkalinity. Further verification of the pCO2 optode data was achieved using complimentary variables such as nutrients and dissolved oxygen. The shipboard precision of the pCO2 sensor was 9.5μatmdetermined both from repeat measurements of certified reference materials and from the standard deviation of seawater measurements while on station. Finally, the optode deployment data was used to evaluate the physical and biogeochemical controls on pCO2

    Free Fermionic Heterotic Model Building and Root Systems

    Full text link
    We consider an alternative derivation of the GSO Projection in the free fermionic construction of the weakly coupled heterotic string in terms of root systems, as well as the interpretation of the GSO Projection in this picture. We then present an algorithm to systematically and efficiently generate input sets (i.e. basis vectors) in order to study Landscape statistics with minimal computational cost. For example, the improvement at order 6 is approximately 10^{-13} over a traditional brute force approach, and improvement increases with order. We then consider an example of statistics on a relatively simple class of models.Comment: Standard Latex, 12 page

    Isotopic fractionation of carbon during uptake by phytoplankton across the South Atlantic subtropical convergence

    Get PDF
    The stable isotopic composition of particulate organic carbon (δ13CPOC) in the surface waters of the global ocean can vary with the aqueous CO2 concentration ([CO2(aq)]) and affects the trophic transfer of carbon isotopes in the marine food web. Other factors such as cell size, growth rate and carbon concentrating mechanisms decouple this observed correlation. Here, the variability in δ13CPOC is investigated in surface waters across the south subtropical convergence (SSTC) in the Atlantic Ocean, to determine carbon isotope fractionation (ϵp) by phytoplankton and the contrasting mechanisms of carbon uptake in the subantarctic and subtropical water masses. Our results indicate that cell size is the primary determinant of δ13CPOC across the Atlantic SSTC in summer. Combining cell size estimates with CO2 concentrations, we can accurately estimate "p within the varying surface water masses in this region. We further utilize these results to investigate future changes in "p with increased anthropogenic carbon availability. Our results suggest that smaller cells, which are prevalent in the subtropical ocean, will respond less to increased [CO2(aq)] than the larger cells found south of the SSTC and in the wider Southern Ocean. In the subantarctic water masses, isotopic fractionation during carbon uptake will likely increase, both with increasing CO2 availability to the cell, but also if increased stratification leads to decreases in average community cell size. Coupled with decreasing δ13C of [CO2(aq)] due to anthropogenic CO2 emissions, this change in isotopic fractionation and lowering of δ13CPOC may propagate through the marine food web, with implications for the use of δ13CPOC as a tracer of dietary sources in the marine environment

    Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity

    Get PDF
    Accumulation of anthropogenic CO2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO2 accumulation are emerging, however the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primary consequence of increased oceanic CO2 uptake is a decrease in the carbonate system buffer capacity, which characterises the system's chemical resilience to changes in CO2, generating the potential for enhanced variability in pCO2 and the concentration of carbonate [CO32‐], bicarbonate [HCO3‐] and protons [H+] in the future ocean. We conducted a meta‐analysis of 17 shipboard manipulation experiments performed across three distinct geographical regions that encompassed a wide range of environmental conditions from European temperate seas to Arctic and Southern oceans. These data demonstrated a correlation between the magnitude of natural phytoplankton community biological responses to short‐term CO2 changes and variability in the local buffer capacity across ocean basin scales. Specifically, short‐term suppression of small phytoplankton (<10 μm) net growth rates were consistently observed under enhanced pCO2 within experiments performed in regions with higher ambient buffer capacity. The results further highlight the relevance of phytoplankton cell size for the impacts of enhanced pCO2 in both the modern and future ocean. Specifically, cell‐size related acclimation and adaptation to regional environmental variability, as characterised by buffer capacity, likely influences interactions between primary producers and carbonate chemistry over a range of spatio‐temporal scales

    Stable carbon isotopes of dissolved inorganic carbon for a zonal transect across the subpolar North Atlantic Ocean in summer 2014

    Get PDF
    The stable carbon isotope composition of dissolved inorganic carbon (δ13CDIC) in seawater was measured in samples collected during June–July 2014 in the subpolar North Atlantic. Sample collection was carried out on the RRS James Clark Ross cruise JR302, part of the “Radiatively Active Gases from the North Atlantic Region and Climate Change” (RAGNARoCC) research programme. The observed δ13CDIC values for cruise JR302 fall in a range from −0.07 to +1.95 ‰, relative to the Vienna Pee Dee Belemnite standard. From duplicate samples collected during the cruise, the 1σ precision for the 341 results is 0.08 ‰, which is similar to our previous work and other studies of this kind. We also performed a cross-over analysis using nearby historical δ13CDIC data, which indicated that there were no significant systematic offsets between our measurements and previously published results. We also included seawater reference material (RM) produced by A. G. Dickson (Scripps Institution of Oceanography, USA) in every batch of analysis, enabling us to improve upon the calibration and quality-control procedures from a previous study. The δ13CDIC is consistent within each RM batch, although its value is not certified. We report δ13CDIC values of 1.15 ± 0.03 ‰ and 1.27 ± 0.05 ‰ for batches 141 and 144 respectively. Our JR302 δ13CDIC data can be used – along with measurements of other biogeochemical variables – to constrain the processes that control DIC in the interior ocean, in particular the oceanic uptake of anthropogenic carbon dioxide and the biological carbon pump. Our δ13CDIC results are available from the British Oceanographic Data Centre – doi:10.5285/22235f1a-b7f3-687f-e053-6c86abc0c8a6

    Species-specific calcite production reveals Coccolithus pelagicus as the key calcifier in the Arctic Ocean

    Get PDF
    Through the production and export of their calcite coccoliths, coccolithophores form a key component of the global carbon cycle. Despite this key role, very little is known about the biogeochemical role of different coccolithophore species in terms of calcite production, and how these species will respond to future climate change and ocean acidification. Here, we present the first study to estimate species-specific calcite production, from samples collected in the Arctic Ocean and subarctic Iceland Basin in June 2012. We show that although the coccolithophorid Coccolithus pelagicus comprised only a small fraction of the total community in terms of abundance (2%), our estimates indicate that it was the major calcite producer in the Arctic Ocean and Iceland Basin (57% of total calcite production). In contrast, Emiliania huxleyi formed 27% of the total abundance and was responsible for only 20% of the calcite production. That C. pelagicus was able to dominate calcite production was due to its relatively high cellular calcite content compared with the other species present. Our results demonstrate, for the first time, the importance of investigating the complete coccolithophore community when considering pelagic calcite production, as relatively rare but heavily calcified species such as C. pelagicus can be the key calcite producers in mixed communities. Therefore, the response of C. pelagicus to ocean acidification and climate change has the potential to have a major impact on carbon cycling within the North Atlantic and Arctic Ocean
    corecore