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Abstract 

Accumulation of anthropogenic CO2 is significantly altering ocean chemistry. 

A range of biological impacts resulting from this oceanic CO2 accumulation are 

emerging, however the mechanisms responsible for observed differential 

susceptibility between organisms and across environmental settings remain obscure. A 

primary consequence of increased oceanic CO2 uptake is a decrease in the carbonate 

system buffer capacity, which characterises the system’s chemical resilience to 

changes in CO2, generating the potential for enhanced variability in pCO2 and the 

concentration of carbonate [CO3
2-

], bicarbonate [HCO3
-
] and protons [H

+
] in the 

future ocean. We conducted a meta-analysis of 17 shipboard manipulation 

experiments performed across three distinct geographical regions that encompassed a 

wide range of environmental conditions from European temperate seas to Arctic and 

Southern oceans. These data demonstrated a correlation between the magnitude of 

natural phytoplankton community biological responses to short-term CO2 changes and 

variability in the local buffer capacity across ocean basin scales. Specifically, short-

term suppression of small phytoplankton (<10 µm) net growth rates were consistently 

observed under enhanced pCO2 within experiments performed in regions with higher 

ambient buffer capacity. The results further highlight the relevance of phytoplankton 

cell size for the impacts of enhanced pCO2 in both the modern and future ocean. 

Specifically, cell-size related acclimation and adaptation to regional environmental 
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variability, as characterised by buffer capacity, likely influences interactions between 

primary producers and carbonate chemistry over a range of spatio-temporal scales. 

 

Introduction 

Phytoplankton play a pivotal role in marine ecosystems and ocean 

biogeochemistry, and hence have been the focus of intensive research into the 

potential for ongoing changes in marine carbonate chemistry driven by the continued 

uptake of anthropogenic atmospheric CO2 (often termed ocean acidification, OA)
 

(Royal Society, 2005; Doney et al., 2009) to influence their physiology, ecology and 

productivity. Phytoplankton have been demonstrated to display a variety of 

physiological sensitivities to OA within experimental manipulations performed over a 

range of timescales
 
(Riebesell & Tortell, 2011; Kroeker et al., 2013; Collins et al., 

2014; Wu et al., 2014; Dutkeiwicz et al., 2015; Riebesell et al., 2017). However, 

robust reproducible responses and a clear mechanistic understanding of the observed 

differential responses have remained elusive (Kroeker et al., 2013; Flynn et al., 2012; 

Bach et al., 2015). 

In addition to altering the absolute concentrations of a range of chemical 

species, including pCO2, carbonate [CO3
2-

], bicarbonate [HCO3
-
] and protons [H

+
], 

OA also leads to decreases in the carbonate system buffer capacity (Egleston et al., 

2010; Frankignoulle, 1994). Carbonate chemistry system (CCS) variability as a result 

of both biotic and abiotic forcing is thus expected to increase in the future ocean 

(Flynn et al., 2012; Egleston et al., 2010). Moreover, these ongoing changes in 

carbonate chemistry are occurring against a background of both natural and 

anthropogenically altered gradients in a range of other potentially interacting 

environmental drivers of phytoplankton ecophysiology (Boyd et al., 2010, 2015; 
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2016), 
 
including temperature (Kroeker et al., 2013; Tatters

 
et al., 2013; Humphreys, 

2017) and nutrient availability (Hoppe et al., 2013; Muller et al., 2017). Integrative 

understanding of how OA is likely to influence phytoplankton ecophysiology, and 

consequently ocean biogeochemistry, requires an appreciation of the potential for 

variability in a range of these environmental conditions to modulate responses
 
(Boyd, 

2011). 

Within experimental studies, significant physiological responses to altered 

carbonate chemistry for any given organism might be expected under those conditions 

where the magnitude and/or frequency of any imposed change exceeds that of current 

acclimative tolerance (Joint et al., 2011; Denman et al., 2011; Lewis et al., 2013; 

Richier et al., 2014; Boyd et al., 2016).
 
In addition to dictating the response to 

experimental manipulation
 
(Richier et al., 2014), differential acclimative potential 

across organisms may also influence the emergent outcome of community responses 

to the longer-term environmental perturbation represented by OA (Lohbeck et al., 

2012; Reusch & Boyd, 2013; Schaum et al., 2013, 2016; Hendricks et al. 2015). 

Indeed, differential sensitivity to dynamic changes in carbonate chemistry might be 

expected on the basis of theoretical considerations (Flynn et al., 2012) and has 

recently been demonstrated for phytoplankton, specifically between coastal and open 

ocean diatom taxa (Li et al., 2016).  

Understanding the fundamental controls on acclimative tolerance to carbonate 

chemistry variability and adaptive differences in such tolerances between groups and 

across environmental gradients is essential for predicting natural phytoplankton 

community responses to OA-type perturbations over space and time (Flynn et al., 

2012, 2015; Lewis et al., 2013; Schaum et al., 2016; Li et al., 2016). We therefore 

investigated whether differential responses in the sensitivity of phytoplankton to 
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short-term changes in the CCS were observable within natural communities, and 

whether such variability related to ocean scale gradients in environmental conditions. 

Using a unique data set of 17 mesocosm experiments spanning 7 regional seas (i.e. 

from the Greenland to the Weddell seas) and 3 ocean regions (from the Arctic to the 

Southern oceans), we relate observable differential biological responses to the 

susceptibility of the local system to dynamic changes in carbonate chemistry variables, 

as quantified by the buffer capacity, while investigating other potentially confounding 

factors including nutrient availability. 

Materials and Methods 

 

Seawater collection and experimental set up 

A series of 17 shipboard multi-treatment manipulation experiments were 

conducted using equivalent protocols on three cruises (Fig. 1). The first cruise (D366) 

took place in northwest European shelf seas during summer on the RRS Discovery 

(2011 June 6-July 12) (Richier et al., 2014). Two subsequent cruises (JR271 and 

JR274 respectively) were carried out in the Arctic (2012 June 1- July 2) (Poulton et al., 

2016) and Southern (2013 January 9-February 12) (Tarling et al., 2016) oceans, both 

on board the RRS James Clark Ross. Locations, oceanographic settings and 

treatments applied within each experiment are presented in Tables 1 and 2. 

 

Specific cleaning and handling techniques were followed during setup of each 

of the experiments. Briefly, the incubation bottles (Polycarbonate, Nalgene™) were 

acid-cleaned in 1% HCl followed by three de-ionised water (Milli-Q, Millipore) rinses 

during the low-latitude cruise (D366). Further extensive cleaning procedures were 

applied during cruises in potentially iron-limited regions of the ocean (i.e. high-
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latitude regions; Figs. 1a and b). Bottles, upon first use, were filled up to the neck 

with detergent (1% Decon) for 1 day followed by three rinses with de-ionised water, 

and then filled with 10% HCl (Aristar grade) for 3 days followed by three rinses with 

de-ionised water.   

On the day of the experimental setup, vertical profiles of temperature, salinity, 

oxygen, chlorophyll fluorescence, turbidity and Photosynthetically Active Radiation 

(PAR) were obtained in order to select and characterise the depth of experimental 

water collection within the wider water column (Richier et al., 2014). Unfiltered near-

surface (≤33 m) seawater containing the extant natural microbial community was 

collected at the different stations using Niskin bottles attached to a CTD rosette. The 

total of up to 480 L of seawater required for each experiment was collected using 

24×20 L OTE (Ocean Test Equipment) bottles and dispensed from randomly assigned 

OTE bottles through silicon tubing amongst 4.5 L (all experiments) or 1.25 L 

(experiments 2b, 4b and 5b during D366) polycarbonate bottles.  

Multi-treatment (≥4 conditions; Table 1) manipulation experiments were 

incubated in a purposely-converted commercial refrigeration container located on the 

aft deck of the ship. Temperature was maintained (± <1 °C) at the in situ value at the 

time of water collection (Table 2). Irradiance (100 µmol quanta m
-2

 s
-2

) was provided 

by daylight simulation LED panels (Powerpax, UK) over a light-dark cycle 

approximating the ambient photoperiod: 18-6 h light-dark (D366 and JR274) or 24 h 

continuous light (JR271, except for experiment E1 with 18-6 h).  

The majority of experiments (14 out of 17) were run for ≥4 days and involved 

2 sampling points following measurement of initial conditions. Independent 

incubation bottles were sacrificed at every sampling point (Table 1). Specifically, the 

majority of the experiments (11 out of 17) were run using identical durations with 
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sampling points at 0, 2 and 4 days and almost all (14 out of 17) included a time point 

measured after 2 days of incubation, with the shortest resolved timescales often 

corresponding to the most marked observed biological responses
 
(Richier et al., 2014). 

The 3 experiments including inorganic nutrient addition (E2b, E4b and E5b) during 

the first cruise (D366) were run under the same temperature and light regime for a 

shorter incubation period of 2 days with a single sampling point at the end, 

corresponding to the timescale over which maximum response effects were observed 

during this cruise
 
(Richier et al., 2014).  

Following the failure to observe strong responses within those experiments 

performed in higher latitude low temperature systems during the second cruise (JR271; 

Poulton et al., 2016), we subsequently increased incubation timescales for a subset 

number of experiments on the final cruise (JR274) (Table 1). Specifically, the 

potential for the observed continued lack of strong responses to be related to slower 

microbial metabolism within the low temperature waters encountered was 

investigated by running 3 experiments of increasingly longer total duration from 4 to 

6 to 8 days, and through the inclusion of a higher target pCO2 condition of 2000 µatm 

(Table 1). Subsequently, response magnitudes were found to be independent of overall 

experimental duration (see below). 

 

Variables measured 

Total and size fractionated chlorophyll 

Total community chlorophyll concentrations were measured according to the 

method described in Richier et al.
 
(2014). Briefly, aliquots of 100 mL were sampled 

from every incubation bottle and filtered onto 25 mm GF/F filters (Whatman, 0.7 μm 

nominal pore size) or 10 μm pore size polycarbonate filters (Whatman) (to yield a 
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total and a > 10 μm size fraction, respectively and therefore by difference a < 10 μm 

size fraction). Filters were extracted into 6 mL 90% HPLC-grade acetone overnight at 

4 
◦
C in the dark and fluorescence was then measured using a fluorometer (Turner 

Designs Trilogy) following Welschmeyer (1994). 

 

Variable chlorophyll fluorescence (Fv/Fm) 

The photosynthetic physiology of total communities was measured according 

to the method described in Richier et al.
 
(2014) on a Chelsea Scientific Instruments 

FastTracka II™ Fast Repetition Rate fluorometer (FRRf). Briefly, all samples were 

dark acclimated for 30 min and FRRf measurements were corrected for the blank 

effect using carefully prepared 0.2 μm filtrates for all experiments and time points 

(Cullen & Davis, 2003). Fv/Fm was taken as an estimate of the apparent photosystem 

II photochemical quantum efficiency (Kolber et al., 1998). 

 

Particulate organic matter 

Measurements of particulate organic carbon, nitrogen and phosphorous (POC, 

PON and POP, respectively) were used as indices of relative changes in overall 

microbial community biomass, noting that detrital material can form a significant 

component of all of these pools. Although ratios of POC:PON:POP varied across the 

entire data set (not shown), treatment specific patterns of variability in all these 

particulate organic matter pools generally co-varied
 
(Richier et al., 2014). 

Consequently, here we only present the most complete data set (POP), noting that 

conclusions would not differ if using POC or PON, but would be based on a more 

limited subset of experiments. 
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Measurements of POP were performed as previously described
 
(Richier et al., 

2014). Aliquots of 750 mL of seawater were filtered onto 25 mm glass fibre filters 

(Fisher MF 300, effective pore size 0.7 µm), which had been pre-combusted at 400 
◦
C, 

soaked in 10 % HCl for 24 h and rinsed in two subsequent de-ionised water baths for 

12 h each. Following filtration, each filter was oven-dried at 60 
◦
C for 8 to 12 h and 

POP content was measured according to the method described in Raimbault et al.
 

(1999). Briefly, POP compounds were converted into inorganic products by a 

persulfate wet-oxidation under slightly alkaline conditions. After oxidation, inorganic 

products were dissolved in a digestion mixture, autoclaved and analysed for 

phosphate in a Segmented Flow Auto Analyser. In order to estimate the oxidation 

efficiency of the method, standard organic compounds (Standard reference Material® 

1573a) were used.  

Overall, up to 39 variables (biological, chemical and physical) were measured 

in each of the 17 experiments run during the three cruises (results not shown). Sample 

treatments and analyses followed the methods described in Richier et al. (2014). 

 

Carbonate chemistry manipulation 

Sampling was performed on deck for the D366 cruise and inside a trace-metal-

clean container for the two polar cruises (JR271 and JR274).  

Subsamples for carbonate chemistry analyses were taken from the CTD at 

time zero (t0), and TA and DIC were immediately measured using a TA Titrator (AS-

ALK2) and a DIC Analyzer (AS-C3) (Apollo SciTech), respectively. The results were 

calibrated using measurements of certified reference material obtained from A.G. 

Dickson (Scripps Institution of Oceanography, USA). The remaining CCS variables 

were calculated with the CO2SYS programme (version 1.05) (Lewis & Wallace, 1998; 
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Pierrot et al., 2006) run in a MATLAB™ environment and using the carbonic acid 

dissociation constants of Mehrbach et al.
 
(1973) refitted by Dickson & Millero (1987). 

The 1σ precisions for DIC and TA measurements were estimated as 3.8 and 2.0 

mol kg
-1

 respectively (Tynan et al., 2016). 

DIC and TA were subsequently measured on a separate set of manipulated 

reference bottles at t0, as well as within all subsequently sampled time point bottles. 

This checked the performance of the manipulation method, as well as monitored the 

magnitude of any changes in carbonate chemistry due to ongoing biological activity 

within the incubation bottles over the experimental duration (Richier et al., 2014; 

Riebesell & Tortell, 2011). Such changes are presented in Figure S2 with measured 

pCO2 typically within 25% of target values at the first time point, while biological 

activity had generated differences of over 50% from target by the final time points.   

Incubation bottles were filled without headspace and immediately manipulated 

using an equimolar addition of strong acid (1 M HCl) and HCO3
-
 (1 M) (Richier et al., 

2014). In the case of the polar cruises, trace metal clean HCl (Romil, UHP) was used, 

and all reagents were pre-cleaned using a Chelex® cation chelation column (Sunda et 

al., 2005). Within a subset of the experiments, inorganic nutrients were also 

manipulated through addition of major macronutrients (nitrate (NO3
−
), silicic acid 

(dSi) and phosphate (PO4
3−

)) or a trace nutrient (DFe) in a factorial manner under 

both the ambient state of the carbonate system or in addition to being manipulated 

towards a target pCO2 (Table 1). 

 

Biological replicates and statistical power 

Bioassay experiments were set up with seawater collected from either one 

(D366) or three (JR271 and JR274) dedicated CTDs deployed successively. 
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Independent biological replication, corresponding to a minimum of triplicates per 

experimental treatment, was maintained subsequent to the initial point of sampling, 

which corresponded to the closure of a given OTE bottle within the sampled water 

column, with triplicates during JR271 and JR274 being taken from independent CTD 

casts. To provide for robust statistical testing of treatment effects alongside sufficient 

water to perform all required analyses, 9 bottles were used for each of the 4 treatments 

in 3 sets of triplicates (see Richier et al. (2014) for further details). Subsamples (n = 3) 

were collected simultaneously for t0 measurements of each of the variables to be 

measured over the subsequent time course (Table 1). 

 

Data normalisation and statistical analysis 

Experimental time courses of biomass and other variable changes were often 

complex (see below). In order to produce a method of combining data across multiple 

cruises / environments, individual response variables (e.g. Chl, POP, Fv/Fm) measured 

across the experimental treatments (i.e. across the range of target pCO2 levels) were 

normalised to values measured in control bottles at the same time point. This allows 

us to derive a normalised effect magnitude for every time point, treatment and 

variable, i.e. for every variable and treatment: 

(1) Vareffect, treatment = (VarTreatment – VarControl)/VarControl 

For example, the magnitude of the 750 µatm target pCO2 treatment effect for Chl 

within an experiment was given by: 

(2) Chleffect, 750 = (Chl750 – ChlControl)/ChlControl 

yielding a normalised treatment variable which is equivalent to the net integrated 

difference in the total community Chl growth rate between the control and the stated 

(in this case 750 µatm pCO2) treatment. As a result of differences in sampled time 
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points for some experiments (Table 1) and variability in the magnitude of the 

treatment effect over time within experiments displaying strong responses
 
(Richier et 

al., 2014), we also compared maximum differential sensitivities of biological 

responses to CCS manipulation across the full suite of experiments. Here we chose 

the maximum values of the normalised treatment effect over the experimental 

duration so that the maximal normalised treatment effects (MNTE) represented the 

maximum observed differential response between a treatment and the control 

condition over all sampling time points for any given treatment in any given 

experiment. As discussed elsewhere, the strongest MNTEs were typically observed at 

the shortest timescales (2 day) resolved
 
(Richier et al., 2014). 

Tests for statistical differences (p<0.05) between all treatments and controls 

were subsequently performed within all individual experiments using 1-way ANOVA 

followed by Tukey-Kramer means comparison tests. For simplicity, here we only 

quote significant differences between controls and treatments, noting that significant 

increases in treatment effect as a function of imposed CCS manipulation did occur 

(Richier et al. 2014). Subsequently, statistically significant correlations (p<0.05, n = 

17) between the magnitude of treatment effects, as determined by the normalized 

observed difference between the control treatment and the 750 µatm treatment(s) (i.e. 

MNTE750) observed across all experiments, and the range of measured initial 

conditions across all the experiments were assessed using Pearson’s product-moment 

correlation.   

 

 

Results 
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Variability in responses across environmental settings 

Incubation of natural samples alongside manipulations of the carbonate 

chemistry system (CCS) and nutrients (Table 1) produced complex time-varying 

responses in many of the performed experiments (Fig. 2), likely reflecting the range of 

different environmental conditions (Table 2) and associated community structures 

encountered across the full suite of experiments. Overall biomass was observed to 

increase (e.g. Fig. 2a, h, i), remain relatively constant (e.g. Fig. 2b, d), or occasionally 

decline within certain treatments (e.g. Fig. 2d, f). Moreover, although addition of the 

limiting nutrient(s), macronutrients nitrogen (N) and phosphorous (P) for D366 

(Richier et al., 2014) and iron (Fe) for JR274 (Fig. 2g) invariably resulted in a 

divergence between treatments, differential treatment effects were only observed as a 

function of CCS manipulation in a subset of the experiments (e.g. Fig. 2d-f). In order 

to reduce the data and investigate the potential drivers of this observed differential 

sensitivity to CCS manipulation, we thus calculated MNTEs as described above.  

Relative responses of microbial communities against latitude 

In total, across our full suite of experiments and target pCO2 levels, up to 48 

comparisons between triplicate sets of biological treatments and control bottles were 

possible, with statistically significant CCS treatment effects expressed as MNTEs 

observable in around 30% of the comparisons (Figs. 3 and 4).  

As previously reported (Richier et al., 2014), experiments performed at mid-

latitudes (Fig. 3) consistently revealed relative decreases in net growth, as indicated 

by total chlorophyll (Chl) accumulation (Fig. 3), phytoplankton cell counts
 
(Richier et 

al., 2014) and indices of overall community biomass (Fig. 4), under enhanced pCO2 

(and hence changes in other CCS variables, such as [H
+
]). In contrast, the apparent 

photosynthetic efficiency of phytoplankton communities was less affected (Fig. 5).  
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Where statistically significant responses in total community Chl (Figs. 3) and 

microbial biomass accumulation were observed (Fig. 4), these effects scaled with the 

magnitude of the imposed shift in the CCS, with a progressive response such that 

MNTE1000 > MNTE750 > MNTE550 (Fig. 3 and 4). In contrast, no statistically 

significant responses could typically be detected within identical experiments 

performed in the Southern Ocean, higher latitude North Atlantic and Arctic Oceans 

(Fig. 3), indicating a prevailing tolerance of polar ocean natural microbial populations 

to the imposed extreme and rapid changes to the CCS. 

 

Drivers for the variable physiological susceptibility across phytoplankton 

communities 

In order to identify potential environmental drivers for the marked variability 

in the biological responses to CCS manipulation we observed, we considered MNTEs 

across all 17 experiments and manipulated pCO2 levels (Figs. 3 and 4). In addition to 

scaling with the magnitude of the imposed experimental manipulation (targeted pCO2 

levels), the observed systematic differences in net total community Chl also scaled 

with increasing sea surface temperature (SST) and the correlated increases in buffer 

capacity (Sundquist et al., 1979), as quantified by the H
+
 buffer factor (DIC= (∂ 

ln[H+]/∂DIC)
-1

)
 
(Fig. 4; see Supplementary Information) (Egleston et al., 2010). 

The increased phytoplankton sensitivity to pCO2 (and/or [H
+
] or other CCS 

variables) observed under warmer temperatures and higher buffer capacity conditions 

strongly correlated with, and was dominated by, the response (decreased net growth) 

of the smaller (<10 µm) size classes (Figs. 4 and S1). These coherent responses 

occurred irrespective of initial nutrient concentrations, which varied considerably 
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between experiments (Table 2). Moreover, whilst parallel macronutrient and Fe 

additions (Table 1) enhanced net phytoplankton growth in the European shelf seas and 

Southern Ocean respectively, short-term responses to increasing pCO2 were also 

observed irrespective of nutrient addition in the latter (Fig. 4). The overall MNTE to 

CCS manipulation within these temperate (>12 
o
C) high-buffer capacity waters was of 

comparable magnitude to the nutrient MNTEs (Fig. 6). 

 

Observed responses within our 750 µatm pCO2 treatments (MNTE750) were 

subsequently compared to a range of initial environmental conditions across all 

experiments (Fig. 7). Decreased net growth rates for bulk community and small sized 

phytoplankton (<10 µm) were significantly correlated with SST and CCS buffer 

factors (Fig. 7), statistically confirming the patterns observed across the full 

experimental/treatment data set (Fig. 4). Significant correlations were also observed 

between the bulk phytoplankton responses and both ambient phosphate concentrations 

and Chl-normalized photosynthetic rates (Fig. 7), which also tend to correlate with 

SST over large oceanic scales (Sundquist et al., 1979; Behrenfeld & Falkowski, 1997). 

In contrast, differences in net phytoplankton growth rates as a function of imposed 

treatment displayed no correlation with any of the other wide range of initial physical, 

chemical and biological variables tested, including indices of initial community size 

structure (Fig. 7). 

Discussion 

Combined analysis of a large suite of experiments performed using near-

identical protocols on multiple cruises across oceanic scales (Fig. 1), revealed 

differential biological responses which could be related to geographical ambient 

environmental conditions (Figs. 4 and 7). Specifically, the magnitude of observed 
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biological responses to CCS manipulation varied as a function of latitude (Fig. 3), in 

association with correlated variability in ambient nutrient concentration (phosphate), 

temperature and CCS buffer capacity (Fig. 7). Organism responses to environmental 

forcing may vary as a function of interactions between any one or more such 

environmental drivers (Boyd et al., 2010; 2016). For example, responses to CCS 

manipulation may vary as a function of nutrient availability (Li et al., 2012; Richier et 

al., 2014; Trimborn et al., 2017), while temperature will also directly influence 

metabolic rates and potentially interact with variability in the CCS to determine 

organism responses (Flynn et al., 2012; Humphreys, 2017). 

In terms of nutrient availability, although MNTEs correlated with phosphate 

availability (Fig. 7), this was unlikely to be causative. Similar responses could be 

observed within both our ambient and nutrient replete experimental treatments (Figs. 

4 & 6), with overall treatment effects being of a similar magnitude within the higher 

temperature lower buffer capacity waters irrespective of nutrient condition (Fig. 6). 

Although we cannot fully discount a potential direct influence of temperature on the 

observed differential responses (Fig. 7), we argue that any such influence would have 

to be through an unknown (eco-) physiological mechanism rather than simply being 

an artefact of experimental duration. Specifically, maximum net growth rates might be 

expected to be around 2 to 3-fold higher in the warmest compared to the coldest 

waters sampled (Eppley, 1972). Consistent with such expectation, maximum Chl-

normalised photosynthetic rates were around 2 to 3-fold higher (Fig. 7) in the lower 

latitude experiments, as were net growth rates within our nutrient replete experimental 

treatments (0.19-0.27 d
-1

 for SST < 3°C versus 0.28-0.68 d
-1

 for SST > 12°C). 

However, CCS responses in the high latitude experiments remained insignificant, 

despite a subset of these being up to twice the overall experimental duration (Fig. 2 h, 
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i, Table 1) and 4 times longer than the 2 day time point where MNTEs were typically 

observed within the mid- latitude experiments (Fig. 2).  

Although we cannot unequivocally relate causation to correlation, we argue 

that the association of the strongest MNTEs with the lowest buffer capacity waters 

(Fig. 7) is consistent with theoretical expectations and previous arguments (Flynn et al. 

2012; Richier et al. 2014). Specifically, the magnitude of natural CCS variability 

encountered by an aquatic organism is a complex function of external forcing 

(Hofmann et al., 2011), buffering capacity (Hofmann et al. 2010; Glas et al., 2012), 

behaviour (Lewis et al., 2013), cell morphology (Flynn et al., 2012; Hurd et al., 2011), 

metabolic rate
 
(Flynn et al., 2012; Chrachri et al. 2018), and diffusional transport 

constraints (Glas et al., 2012). All of these factors may interact (Flynn et al., 2012; 

Richier et al., 2014; Hofmann et al., 2011; Glas et al., 2012) across a broad range of 

temporal (from hours to days; Hofmann et al., 2011) and spatial (from single 

organism to ecosystem; Hendrick et al., 2015) scales.  

At cellular scales, the microenvironment at the vicinity of the cell, or diffusive 

boundary layer (DBL), decouples chemical concentrations at the cell surface from 

those within the surrounding seawater (Wolf-Gladrow et al., 1999; Zeebe et al., 2003; 

Chrachri et al., 2018), potentially mediating physiological susceptibility to CCS 

variability (Flynn et al., 2012; Glas et al., 2012; Hurd et al., 2011). Indeed, feedbacks 

between metabolic processes (photosynthesis, respiration, calcification) and 

subsequent CCS variability at the cell surface is highly dependent on the thickness of 

the DBL (Flynn et al., 2012). Moreover, the thickness of the DBL is itself a function 

of both cell morphology/cell size (Flynn et al., 2012; Finkel et al., 2010) and ambient 

seawater flow regime (Glas et al., 2012; Hurd et al., 2011). Consequently, large-celled 

phytoplankton with thicker DBLs would be expected to experience higher natural 
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CCS variability at the cell surface and hence have a higher inherent tolerance to 

external CCS forcing than smaller cells (Flynn et al., 2012; Richier et al., 2014). 

The observed differential sensitivity of phytoplankton communities to 

imposed CCS variability within our combined data set (Figs. 3, 4 and 7) is thus 

consistent with such theoretical considerations (Flynn et al., 2012). Specifically, 

enhanced susceptibility to rapid CCS changes for natural communities sampled under 

high buffer capacity conditions may reflect a lower tolerance to external changes in 

CCS under conditions where natural variability both within bulk seawater and the 

DBL is lower (Flynn et al., 2012). It is therefore logical to expect that this mechanism 

would be amplified for smaller cells with thinner DBLs, where the influence of bulk 

seawater buffering capacity on cell surface buffering should be greatest (Flynn et al., 

2012; Richier et al., 2014)
 
(Figs. 4 and 7). 

Given the short timescale of the anthropogenic perturbation compared to 

phytoplankton generation and hence evolutionary timescales (Lohbeck et al., 2012; 

Schaum et al., 2013, 2016),
 
let alone that of short-term experimental manipulations

 

(Joint et al., 2011), the implications of the proposed mechanisms in the context of 

future OA remain difficult to specify. The most marked responses that we observed 

typically occurred over the shortest timescales resolved (2 days) (Richier et al., 2014), 

with less pronounced differences observable over timescales ≥72 h (Fig. 2) when, in 

some cases, in the absence of additional nutrient enrichment, nutrient exhaustion may 

have driven the system to a similar state across all treatments
 
(Richier et al., 2014). 

However, we suggest that the observed dominance of short response timescales could 

also reflect subsequent rapid acclimation of the measured phytoplankton populations 

following an initial stress response caused by the experimental manipulation forcing 

the small cell sized sub-population outside of their extant acclimative tolerance range. 
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In addition to our observed short timescale responses not being simply 

scalable to longer timescales, our results also do not preclude the potential importance 

of other drivers of interactions between phytoplankton and the CCS, either within 

experimental studies or under altered future conditions
 
(Riebesell & Tortell, 2011). 

For example, elevated pCO2 may also directly facilitate enhanced growth rates, in 

particular for larger celled phytoplankton (Riebesell & Tortell, 2011; Wu et al., 2011). 

Minor positive treatment effects in our lower latitude experiments (Fig. 3) would be 

consistent with such a mechanism, although these observations were not typically 

significant.  

Our results suggest that both short- and long-term experiments (Tatters et al., 

2013) investigating the impact of OA may need careful interpretation, as any extant 

organism lacking in acclimative tolerance to rapid CCS changes might be 

disadvantaged and hence selected against in the early stages of any CCS manipulation 

experiment. Although initial community size structure was not a significant predictor 

of the differential responses (Fig. 7) (Richier et al., 2014), both community 

composition and the history of prior environmental fluctuations, as mediated by buffer 

capacity, may thus influence the outcome of experiments over a range of timescales. 

More broadly, these also influence the selective and evolutionary outcomes of 

interactions between phytoplankton communities and CCS forcing (Schaum et al., 

2016; Flynn et al., 2015; Li et al., 2016). 

Oceanic uptake of anthropogenic CO2 will continue to decrease the CCS 

buffer capacity in the future (Egleston et al., 2010; Schaum et al., 2016). Spatial 

gradients in buffer capacity will also decrease as buffering approaches a minimum 

where dissolved inorganic carbon (DIC) and total alkalinity (TA) converge (Fig. 2a) 

(Egleston et al., 2010). Although our experiments covered a significant range of 
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extant buffer capacity variability in the oceans (Fig. 3a), extension to lower latitude, 

higher buffer capacity systems would be desirable in future studies. Indeed, low 

latitude oligotrophic waters with high buffering capacity will experience the greatest 

absolute changes in the future (Fig. 3a), with up to 22% decreases in resistance to [H
+
] 

variation (Egleston et al., 2010) and corresponding increases in the degree of CCS 

variability.  

In contrast, cold DIC-rich high latitude systems such as we sampled in the 

Southern Ocean, high latitude North Atlantic and Arctic will be subject to lower 

decreases, with buffer factors potentially approaching theoretical minima around the 

end of this century (Fig. 3a) (Orr et al., 2005). Relative changes in the degree of near 

cell surface CCS variability (Egleston et al., 2010; Flynn et al., 2012; Chrachri et al., 

2018)
 
will be larger in mid-latitude temperate systems, but largest in the potentially 

expanding (Sarmiento et al., 2004; Polovna et al., 2008)
 
low latitude oligotrophic 

systems. These environments, where extant phytoplankton communities are typically 

dominated by small celled taxa (Finkel et al., 2010), might be expected to display the 

lowest inherent acclimative tolerance to CCS variability. Increased [H
+
] variability 

may therefore have the greatest potential to drive adaptive responses of microbial 

communities (Flynn et al., 2012; Lewis et al., 2013), through a combination of 

selection or evolution (Schaum et al., 2016), in such low-latitude systems. 

Geographically related sensitivities of upper-ocean phytoplankton 

communities to imposed rapid changes in the CCS (Fig. 2) cautions against simple 

extrapolation of single or geographically limited experimental results (Joint et al., 

2011). Regional environmental variability, including the potential role of decreased 

seawater buffer capacity and any associated ecosystem feedbacks, needs to be 
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considered alongside a taxonomic, functional group and evolutionary perspective 

(Collins et al., 2014; Schaum et al., 2013, 2016; Flynn et al., 2015).  

The overall consequences of any buffer capacity and cell size related 

acclimative tolerances to CCS variability (Figs. 3, 4 and 7) for marine ecosystems and 

subsequent perturbations to biogeochemical cycles will likely depend on the 

magnitude of the metabolic costs associated with adaptation to a more variable 

environment. It is plausible that CCS fluctuations at the cell surface, as a function of 

cell size (Flynn et al., 2012), location (Hofmann et al., 2011) and altered forcing 

(Egleston et al., 2010), may influence selection (Schaum et al., 2016; Li et al., 2016; 

Gaitán-Espitia et al., 2017) and contribute to shifts in phytoplankton community 

structure
 
(Finkel et al., 2010). For example, energetic costs incurred by organisms 

requiring higher active H
+
 and/or HCO3

-
 transport for cellular homeostasis purposes 

(Flynn et al., 2012; Taylor et al., 2012), may trade-off against the consequences of 

poorer cellular acid-base regulation or the requirement to be smaller (Schlüter et al., 

2014). Despite any remaining ecophysiological uncertainties, our study highlights 

how organism and ecosystem responses to OA need to be considered not only in the 

context of changes to the mean CCS state, but also in relation to the magnitude of 

CCS variability experienced by organisms at cellular scales (Flynn et al., 2012; 

Schaum et al., 2016; Chrachri et al., 2018). We suggest that these factors may be 

fundamentally linked to the regionally variable buffering characteristics of oceanic 

waters. 
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Figures caption 

Figure 1. Locations of experiments throughout the three cruises. Sea surface 

temperature (SST; °C) varied markedly across experimental locations (a, b). Red dots 

illustrate experimental locations.  

 

Figure 2. Time series measurements of total Chl a normalized to initial condition 

[see equations 1 & 2] for9 representative examples from the 17 experiments. 

Examples plotted are from the Arctic, cruise JR271 experiments 3 (a), 4 (b) and 5 (c), 

the temperate waters of the European continental shelf, cruise D366 experiments 3 (d), 

4 (e) and 5 (f) and the Southern Ocean, cruise JR274, experiments 2 (g), 3 (h), 4 (i). 

Plotted values are means ±1 SE, for biological triplicates, with colours indicating 

experimental treatment as labelled in (a). Note, open symbols in (g) indicate 

treatments amended with Fe. 

 

Figure 3. Latitudinal gradients in natural buffer factor and relative responses of 

microbial communities against latitude. Marked natural gradients in the H
+
 buffer 

factor (βDIC) are present in the Atlantic Ocean and were sampled across the full suite 

of experiments (a). Maximum values of biological responses normalised to controls 

observed over the duration of each experiment [see equation (2)] presented as a 

function of treatment and latitude, with the colour scale on the right side indicating the 

magnitude of response (b). Observed natural large scale oceanic gradients in in situ 

buffer factors (a) were derived from the Global Ocean Data Analysis Project 

(GLODAP) database
 
(Key et al. 2004) with comparative modelled environmental 

gradients for the 1990s-2090s (dark blue and pink lines, respectively)
 
(Yool et al., 

2013). Vertical dotted line in (a) indicates the approximate minimum buffer factors 
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expected as DIC approaches TA
 
(Egleston et al., 2010). Significant differences 

between treatments and controls in (b) are indicated by white dots (ANOVA, Tukey-

Kramer, p<0.05, N = 3).  

 

Figure 4. Ranked relative biological responses of natural microbial communities 

to altered pCO2. Observed maximum values of control normalised experimental 

responses  to increased pCO2 across all 17 natural microbial communities analysed. 

Phytoplankton responses are presented for total and size fractionated (<10 µm or >10 

µm) Chl across all measured target pCO2 concentrations under experimental 

conditions with (‘-’) or without (‘+’) additional nutrient (Nut.) amendment. 

Experimental results were ranked in order of (a) ambient sea surface temperature 

(SST, °C) or (b) initial H
+
 buffer factor

 
(DIC). Calculations, colour scales and 

statistical tests are as described for Fig. 3b. 

 

Figure 5. Response magnitudes of different variables ordered as a function of 

initial H
+
 buffer factor

 
(βDIC).  Colour scale on the right side indicates the magnitude 

of response with abbreviations, calculations and significant differences between 

treatments all as described for Figs. 3 & 4. 

 

Figure 6. Maximal normalised treatment effects (MNTE) to variations in 

chemical species and nutrient addition. Maximal effects in response to pCO2 (and 

hence [H
+
] etc.) manipulation and nutrient addition across all experiments grouped as 

(a, c) a function of temperature (°C) and (b, d) initial H
+
 buffer capacity (DIC). 

Plotted values are means ±1 S.E. of the mean normalised responses across all 

experiments. 
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Figure 7. Correlation between indices of normalised phytoplankton responses 

under the 750 µatm pCO2 treatment and representative initial conditions. Scatter 

plots of whole community (total Chl) normalised phytoplankton responses in the 750 

µatm treatment are presented against representative initial conditions (top), alongside 

a heat map of correlation coefficients between three indices of phytoplankton 

responses in the 750 µatm treatment and the complete set of available initial 

conditions. The following abbreviations are used: sea surface temperature (SST); 

Chlorophyll (Chl); photosynthetic rate (P
C
); Chl normalized photosynthetic rate 

(P
C

Chl); apparent photochemical quantum efficiency (Fv/Fm); particulate organic 

carbon (POC); particulate organic nitrogen (PON); particulate organic phosphorous 

(POP); total alkalinity (TA); dissolved inorganic carbon (DIC); [CO2], [H
+
] and 

carbonate saturation state (Ω) buffer factors (γDIC, DIC and ωDIC respectively, see 

Supplementary information for details on buffer factors calculation). Correlation 

analyses between initial conditions and the presented responses [total and size 

fractionated (<10µm and >10 µm Chl)] were performed across all 17 experiments 

with data normalised to the control treatment as described in Fig. 3b. White dots 

indicate significant correlations between responses and initial conditions (p<0.01). 
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