858 research outputs found

    Optical and RF Metrology for 5G

    Full text link
    Specification standards will soon be available for 5G mobile RF communications. What optical and electrical metrology is needed or available to support the development of the supporting optical communication systems? Device measurement, digital oscilloscope impairments and improving system resolution are discussed.Comment: 2017 IEEE Photonics Society Summer Topical Meeting Series (SUM

    A LTE MIMO OTA Test System Using Vector Signal Transceivers

    Get PDF
    A 2 × 2 multiple-input-multiple-output over-the-air (MIMO OTA) test system based on four field-programmable Vector-Signal-Transceiver (VST) modules is presented. The system enables 2 x 2 MIMO OTA testing by assembling of a twochannel Evolved Node B (eNodeB) LTE base station emulator, a 2x2 channel emulator, and a two-channel user equipment (UE) simulator. A two-stage MIMO OTA test method has been demonstrated with downlink Long-Term Evolution Time-Division Duplex (LTE-TDD) mode using different modulation and coding schemes (MCSs). Test results and analysis are shown. This system will allow a systematic study of MIMO OTA metrology needs

    Flight-Test Evaluation of Landing Gear Noise Reduction Technologies

    Get PDF
    Results from the third Acoustics Research Measurements flight test, conducted under the NASA Flight Demonstrations and Capabilities project, are presented and discussed. The test evaluated landing gear and gear cavity noise mitigation technologies installed on a NASA Gulfstream G-III. Aircraft configurations with and without main landing gear treatments were flown at several flap deflections to determine the acoustic performance of the technologies for aircraft equipped with conventional Fowler flaps. With the aircraft flying an approach path and engines at ground-idle, extensive acoustic measurements were acquired with a phased microphone array system. Computed beamform maps were used to examine the effectiveness of the tested technologies in reducing the strength of the noise sources generated by the main landing gear. Various integration regions were devised to extract the farfield noise spectra associated with the treated and untreated landing gear configurations. Analyses of the gathered acoustic data demonstrate that significant noise reduction was achieved. How- ever, the full noise reduction potential of the technologies could not be determined because of contamination from flap inboard edge noise and other secondary sources

    Application of fuzzy logic to the control of wind tunnel settling chamber temperature

    Get PDF
    The application of Fuzzy Logic Controllers (FLC's) to the control of nonlinear processes, typically controlled by a human operator, is a topic of much study. Recent application of a microprocessor-based FLC to the control of temperature processes in several wind tunnels has proven to be very successful. The control of temperature processes in the wind tunnels requires the ability to monitor temperature feedback from several points and to accommodate varying operating conditions in the wind tunnels. The FLC has an intuitive and easily configurable structure which incorporates the flexibility required to have such an ability. The design and implementation of the FLC is presented along with process data from the wind tunnels under automatic control

    Radiative Reference Plane Estimation and Uncertainty for THz Path Loss Measurements

    Get PDF

    Early Contrast Enhancement: a novel Magnetic Resonance Imaging biomarker of pleural malignancy

    Get PDF
    Introduction: Pleural Malignancy (PM) is often occult on subjective radiological assessment. We sought to define a novel, semi-objective Magnetic Resonance Imaging (MRI) biomarker of PM, targeted to increased tumour microvessel density (MVD) and applicable to minimal pleural thickening. Materials and methods: 60 consecutive patients with suspected PM underwent contrast-enhanced 3-T MRI then pleural biopsy. In 58/60, parietal pleura signal intensity (SI) was measured in multiple regions of interest (ROI) at multiple time-points, generating ROI SI/time curves and Mean SI gradient (MSIG: SI increment/time). The diagnostic performance of Early Contrast Enhancement (ECE; which was defined as a SI peak in at least one ROI at or before 4.5 min) was compared with subjective MRI and Computed Tomography (CT) morphology results. MSIG was correlated against tumour MVD (based on Factor VIII immunostain) in 31 patients with Mesothelioma. Results: 71% (41/58) patients had PM. Pleural thickening was <10 mm in 49/58 (84%). ECE sensitivity was 83% (95% CI 61–94%), specificity 83% (95% CI 68–91%), positive predictive value 68% (95% CI 47–84%), negative predictive value 92% (78–97%). ECE performance was similar or superior to subjective CT and MRI. MSIG correlated with MVD (r = 0.4258, p = .02). Discussion: ECE is a semi-objective, perfusion-based biomarker of PM, measurable in minimal pleural thickening. Further studies are warranted

    A Hybrid Technique applied to the Intermediate-Target Optimal Control Problem

    Get PDF
    The DoD has introduced the concept of Manned-Unmanned Teaming, a subset of which is the loyal wingman. Optimal control techniques have been proposed as a method for rapidly solving the intermediate-target (mid-point constraint) optimal control problem. Initial results using direct orthogonal collocation and a gradient-based method for solving the resulting nonlinear program reveals a tendency to converge to or to get `stuck’ in locally optimal solutions. The literature suggested a hybrid technique in which a particle swarm optimization is used to quickly find a neighborhood of a more globally minimal solution, at which point the algorithm switches to a gradient-based nonlinear programming solver to converge on the globally optimal solution. The work herein applies the hybrid optimization technique to rapidly solve the loyal wingman optimal control problem. After establishing the background and describing the loyal wingman particle swarm optimization algorithm, the problem is solved first using the gradient-based direct orthogonal collocation method, then re-solved using a hybrid approach in which the results of the particle swarm optimization algorithm are used as the initial guess for the gradient-based direct orthogonal collocation method. Results comparing the final trajectory and convergence time, demonstrate the hybrid technique as a reliable method for producing rapid, autonomous, and feasible solutions to the loyal wingman optimal control problem

    Multispectral snapshot demosaicing via non-convex matrix completion

    Full text link
    Snapshot mosaic multispectral imagery acquires an undersampled data cube by acquiring a single spectral measurement per spatial pixel. Sensors which acquire pp frequencies, therefore, suffer from severe 1/p1/p undersampling of the full data cube. We show that the missing entries can be accurately imputed using non-convex techniques from sparse approximation and matrix completion initialised with traditional demosaicing algorithms. In particular, we observe the peak signal-to-noise ratio can typically be improved by 2 to 5 dB over current state-of-the-art methods when simulating a p=16p=16 mosaic sensor measuring both high and low altitude urban and rural scenes as well as ground-based scenes.Comment: 5 pages, 2 figures, 1 tabl
    • …
    corecore