170 research outputs found

    Excitatory Action of Extracellular ATP on Chick Skeletal Muscle

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74927/1/j.1749-6632.1990.tb37713.x.pd

    Responses of Rat P2X2 Receptors to Ultrashort Pulses of ATP Provide Insights into ATP Binding and Channel Gating

    Get PDF
    To gain insight into the way that P2X2 receptors localized at synapses might function, we explored the properties of outside-out patches containing many of these channels as ATP was very rapidly applied and removed. Using a new method to calibrate the speed of exchange of solution over intact patches, we were able to reliably produce applications of ATP lasting <200 μs. For all concentrations of ATP, there was a delay of at least 80 μs between the time when ATP arrived at the receptor and the first detectable flow of inward current. In response to 200-μs pulses of ATP, the time constant of the rising phase of the current was ∼600 μs. Thus, most channel openings occurred when no free ATP was present. The current deactivated with a time constant of ∼60 ms. The amplitude of the peak response to a brief pulse of a saturating concentration of ATP was ∼70% of that obtained during a long application of the same concentration of ATP. Thus, ATP leaves fully liganded channels without producing an opening at least 30% of the time. Extensive kinetic modeling revealed three different schemes that fit the data well, a sequential model and two allosteric models. To account for the delay in opening at saturating ATP, it was necessary to incorporate an intermediate closed state into all three schemes. These kinetic properties indicate that responses to ATP at synapses that use homomeric P2X2 receptors would be expected to greatly outlast the duration of the synaptic ATP transient produced by a single presynaptic spike. Like NMDA receptors, P2X2 receptors provide the potential for complex patterns of synaptic integration over a time scale of hundreds of milliseconds

    Identification of Nicotinic Acetylcholine Receptor Recycling and Its Role inn Maintaining Receptor Density at the Neuromuscular Junction \u3cem\u3eIn Vivo\u3c/em\u3e

    Get PDF
    In the CNS, receptor recycling is critical for synaptic plasticity; however, the recycling of receptors has never been observed at peripheral synapses. Using a novel imaging technique, we show here that nicotinic acetylcholine receptors (AChRs) recycle into the postsynaptic membrane of the neuromuscular junction. By sequentially labeling AChRs with biotin-bungarotoxin and streptavidin-fluorophore conjugates, we were able to distinguish recycled, preexisting, and new receptor pools at synapses in living mice. Time-lapse imaging revealed that recycled AChRs were incorporated into the synapse within hours of initial labeling, and their numbers increased with time. At fully functional synapses, AChR recycling was robust and comparable in magnitude with the insertion of newly synthesized receptors, whereas chronic synaptic activity blockade nearly abolished receptor recycling. Finally, using the same sequential labeling method, we found that acetylcholinesterase, another synaptic component, does not recycle. These results identify an activity-dependent AChR-recycling mechanism that enables the regulation of receptor density, which could lead to rapid alterations in synaptic efficacy

    Na V 1.6a is required for normal activation of motor circuits normally excited by tactile stimulation

    Full text link
    A screen for zebrafish motor mutants identified two noncomplementing alleles of a recessive mutation that were named non-active ( nav mi89 and nav mi130 ). nav embryos displayed diminished spontaneous and touch-evoked escape behaviors during the first 3 days of development. Genetic mapping identified the gene encoding Na V 1.6a ( scn8aa ) as a potential candidate for nav . Subsequent cloning of scn8aa from the two alleles of nav uncovered two missense mutations in Na V 1.6a that eliminated channel activity when assayed heterologously. Furthermore, the injection of RNA encoding wild-type scn8aa rescued the nav mutant phenotype indicating that scn8aa was the causative gene of nav . In-vivo electrophysiological analysis of the touch-evoked escape circuit indicated that voltage-dependent inward current was decreased in mechanosensory neurons in mutants, but they were able to fire action potentials. Furthermore, tactile stimulation of mutants activated some neurons downstream of mechanosensory neurons but failed to activate the swim locomotor circuit in accord with the behavioral response of initial escape contractions but no swimming. Thus, mutant mechanosensory neurons appeared to respond to tactile stimulation but failed to initiate swimming. Interestingly fictive swimming could be initiated pharmacologically suggesting that a swim circuit was present in mutants. These results suggested that Na V 1.6a was required for touch-induced activation of the swim locomotor network. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70:508–522, 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75774/1/20791_ftp.pd

    Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease

    Get PDF
    The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis of published GWA studies. We propose that dysregulation of monocyte adaptation to the environment of the gastrointestinal mucosa is the key process leading to inflammatory bowel disease

    A Distinct Macrophage Population Mediates Metastatic Breast Cancer Cell Extravasation, Establishment and Growth

    Get PDF
    Background: The stromal microenvironment and particularly the macrophage component of primary tumors influence their malignant potential. However, at the metastatic site the role of these cells and their mechanism of actions for establishment and growth of metastases remain largely unknown. Methodology/Principal Findings: Using animal models of breast cancer metastasis, we show that a population of host macrophages displaying a distinct phenotype is recruited to extravasating pulmonary metastatic cells regardless of species of origin. Ablation of this macrophage population through three independent means (genetic and chemical) showed that these macrophages are required for efficient metastatic seeding and growth. Importantly, even after metastatic growth is established, ablation of this macrophage population inhibited subsequent growth. Furthermore, imaging of intact lungs revealed that macrophages are required for efficient tumor cell extravasation. Conclusion/Significance: These data indicate a direct enhancement of metastatic growth by macrophages through their effects on tumor cell extravasation, survival and subsequent growth and identifies these cells as a new therapeutic target fo

    Blood Parasites in Owls with Conservation Implications for the Spotted Owl (Strix occidentalis)

    Get PDF
    The three subspecies of Spotted Owl (Northern, Strix occidentalis caurina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n = 17) and unique lineages (n = 12). This high level of sequence diversity is significant because only one Leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    ‘Measuring’ Physical Literacy and Related Constructs: A Systematic Review of Empirical Findings

    Get PDF
    BACKGROUND:The concept of physical literacy has received increased research and international attention recently. Where intervention programs and empirical research are gaining momentum, their operationalizations differ significantly.OBJECTIVE:The objective of this study was to inform practice in the measure/assessment of physical literacy via a systematic review of research that has assessed physical literacy (up to 14 June, 2017).METHODS:Five databases were searched using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Protocols guidelines, with 32 published articles meeting the inclusion criteria. English-language, peer-reviewed published papers containing empirical studies of physical literacy were analyzed using inductive thematic analysis.RESULTS:Qualitative methods included: (1) interviews; (2) open-ended questionnaires; (3) reflective diaries; (4) focus groups; (5) participant observations; and (6) visual methods. Quantitative methods included: (1) monitoring devices (e.g., accelerometers); (2) observations (e.g., of physical activity or motor proficiency); (3) psychometrics (e.g., enjoyment, self-perceptions); (4) performance measures (e.g., exergaming, objective times/distances); (5) anthropometric measurements; and (6) one compound measure. Of the measures that made an explicit distinction: 22 (61%) examined the physical domain, eight (22%) the affective domain; five (14%) the cognitive domain; and one (3%) combined three domains (physical, affective, and cognitive) of physical literacy. Researchers tended to declare their philosophical standpoint significantly more in qualitative research compared with quantitative research.CONCLUSIONS:Current research adopts diverse often incompatible methodologies in measuring/assessing physical literacy. Our analysis revealed that by adopting simplistic and linear methods, physical literacy cannot be measured/assessed in a traditional/conventional sense. Therefore, we recommend that researchers are more creative in developing integrated philosophically aligned approaches to measuring/assessing physical literacy. Future research should consider the most recent developments in the field of physical literacy for policy formation
    corecore