359 research outputs found

    Coastal oceanography and sedimentology in New Zealand, 1967-91.

    Get PDF
    This paper reviews research that has taken place on physical oceanography and sedimentology on New Zealand's estuaries and the inner shelf since c. 1967. It includes estuarine sedimentation, tidal inlets, beach morphodynamics, nearshore and inner shelf sedimentation, tides and coastal currents, numerical modelling, short-period waves, tsunamis, and storm surges. An extensive reference list covering both published and unpublished material is included. Formal teaching and research programmes dealing with coastal landforms and the processes that shape them were only introduced to New Zealand universities in 1964; the history of the New Zealand Journal of Marine and Freshwater Research parallels and chronicles the development of physical coastal science in New Zealand, most of which has been accomplished in last 25 years

    The Quantity Theory of Money is Valid. The New Keynesians are Wrong!

    Get PDF
    We test the quantity theory of money (QTM) using a novel approach and a large new sample. We do not follow the usual approach of first differentiating the logarithm of the Cambridge equation to obtain an equation relating the growth rate of real GDP, the growth rate of money and inflation. These variables must then again be ‘integrated’ by averaging in order to obtain stable relationships. Instead we suggest a much simpler procedure for testing directly the stability of the coefficient of the Cambridge equation. For 125 countries and post-war data we find the coefficient to be surprisingly stable. We do not select for high inflation episodes as was done in most empirical studies; inflation rates do not even appear in our data set. Much work supporting the QTM has been done by economic historians and at the University of Chicago by Milton Friedman and his associates. The QTM was a foundation stone of the monetarist revolution. Subsequently belief in it waned. The currently dominant New Keynesian School, implicitly or explicitly denies the validity of the QTM. We survey this history and argue that the QTM is valid and New Keynesians are wrong

    Ontogeny of iodothyronine deiodinases in human liver

    Get PDF
    The role of the deiodinases D1, D2, and D3 in the tissue-specific and time-dependent regulation of thyroid hormone bioactivity during fetal development has been investigated in animals but little is known about the ontogeny of these enzymes in humans. We analyzed D1, D2, and D3 activities in liver microsomes from 10 fetuses of 15-20 weeks gestation and from 8 apparently

    Outplayed: Regaining Strategic Initiative in the Gray Zone, A Report Sponsored by the Army Capabilities Integration Center in Coordination with Joint Staff J-39/Strategic Multi-Layer Assessment Branch

    Get PDF
    U.S. competitors pursuing meaningful revision or rejection of the current U.S.-led status quo are employing a host of hybrid methods to advance and secure interests contrary to those of the United States. These challengers employ unique combinations of influence, intimidation, coercion, and aggression to incrementally crowd out effective resistance, establish local or regional advantage, and manipulate risk perceptions in their favor. So far, the United States has not come up with a coherent countervailing approach. It is in this “gray zone”—the awkward and uncomfortable space between traditional conceptions of war and peace—where the United States and its defense enterprise face systemic challenges to U.S. position and authority. Gray zone competition and conflict present fundamental challenges to U.S. and partner security and, consequently, should be important pacers for U.S. defense strategy.https://press.armywarcollege.edu/monographs/1924/thumbnail.jp

    Serratamolide is a hemolytic factor produced by Serratia marcescens

    Get PDF
    Serratia marcescens is a common contaminant of contact lens cases and lenses. Hemolytic factors of S. marcescens contribute to the virulence of this opportunistic bacterial pathogen. We took advantage of an observed hyper-hemolytic phenotype of crp mutants to investigate mechanisms of hemolysis. A genetic screen revealed that swrW is necessary for the hyper-hemolysis phenotype of crp mutants. The swrW gene is required for biosynthesis of the biosurfactant serratamolide, previously shown to be a broad-spectrum antibiotic and to contribute to swarming motility. Multicopy expression of swrW or mutation of the hexS transcription factor gene, a known inhibitor of swrW expression, led to an increase in hemolysis. Surfactant zones and expression from an swrW-transcriptional reporter were elevated in a crp mutant compared to the wild type. Purified serratamolide was hemolytic to sheep and murine red blood cells and cytotoxic to human airway and corneal limbal epithelial cells in vitro. The swrW gene was found in the majority of contact lens isolates tested. Genetic and biochemical analysis implicate the biosurfactant serratamolide as a hemolysin. This novel hemolysin may contribute to irritation and infections associated with contact lens use. © 2012 Shanks et al

    Space-based research in fundamental physics and quantum technologies

    Full text link
    Space-based experiments today can uniquely address important questions related to the fundamental laws of Nature. In particular, high-accuracy physics experiments in space can test relativistic gravity and probe the physics beyond the Standard Model; they can perform direct detection of gravitational waves and are naturally suited for precision investigations in cosmology and astroparticle physics. In addition, atomic physics has recently shown substantial progress in the development of optical clocks and atom interferometers. If placed in space, these instruments could turn into powerful high-resolution quantum sensors greatly benefiting fundamental physics. We discuss the current status of space-based research in fundamental physics, its discovery potential, and its importance for modern science. We offer a set of recommendations to be considered by the upcoming National Academy of Sciences' Decadal Survey in Astronomy and Astrophysics. In our opinion, the Decadal Survey should include space-based research in fundamental physics as one of its focus areas. We recommend establishing an Astronomy and Astrophysics Advisory Committee's interagency ``Fundamental Physics Task Force'' to assess the status of both ground- and space-based efforts in the field, to identify the most important objectives, and to suggest the best ways to organize the work of several federal agencies involved. We also recommend establishing a new NASA-led interagency program in fundamental physics that will consolidate new technologies, prepare key instruments for future space missions, and build a strong scientific and engineering community. Our goal is to expand NASA's science objectives in space by including ``laboratory research in fundamental physics'' as an element in agency's ongoing space research efforts.Comment: a white paper, revtex, 27 pages, updated bibliograph

    Peritoneal macrophage heterogeneity is associated with different peritoneal dialysis outcomes

    Get PDF
    Peritonitis remains the major obstacle for the maintenance of long-term peritoneal dialysis and dysregulated host peritoneal immune responses may compromise local anti-infectious defense, leading to treatment failure. Whilst, tissue mononuclear phagocytes, comprising macrophages and dendritic cells, are central to a host response to pathogens and the development of adaptive immune responses, they are poorly characterized in the human peritoneum. Combining flow cytometry with global transcriptome analysis, the phenotypic features and lineage identity of the major CD14+ macrophage and CD1c+ dendritic cell subsets in dialysis effluent were defined. Their functional specialization was reflected in cytokine generation, phagocytosis, and antigen processing/presentation. By analyzing acute bacterial peritonitis, stable (infection-free) and new-starter patients receiving peritoneal dialysis, we identified a skewed distribution of macrophage to dendritic cell subsets (increasing ratio) that associated with adverse peritonitis outcomes, history of multiple peritonitis episodes, and early catheter failure, respectively. Intriguingly, we also noted significant alterations of macrophage heterogeneity, indicative of different maturation and activation states that were associated with different peritoneal dialysis outcomes. Thus, our studies delineate peritoneal dendritic cells from macrophages within dialysate, and define cellular characteristics associated with peritoneal dialysis treatment failure. These are the first steps to unravelling the detrimental adaptive immune responses occurring as a consequence of peritonitis

    Optical Atomic Clock Comparison through Turbulent Air

    Full text link
    We use frequency comb-based optical two-way time-frequency transfer (O-TWTFT) to measure the optical frequency ratio of state-of-the-art ytterbium and strontium optical atomic clocks separated by a 1.5 km open-air link. Our free-space measurement is compared to a simultaneous measurement acquired via a noise-cancelled fiber link. Despite non-stationary, ps-level time-of-flight variations in the free-space link, ratio measurements obtained from the two links, averaged over 30.5 hours across six days, agree to 6×10196\times10^{-19}, showing that O-TWTFT can support free-space atomic clock comparisons below the 101810^{-18} level

    Adherent Human Alveolar Macrophages Exhibit a Transient Pro-Inflammatory Profile That Confounds Responses to Innate Immune Stimulation

    Get PDF
    Alveolar macrophages (AM) are thought to have a key role in the immunopathogenesis of respiratory diseases. We sought to test the hypothesis that human AM exhibit an anti-inflammatory bias by making genome-wide comparisons with monocyte derived macrophages (MDM). Adherent AM obtained by bronchoalveolar lavage of patients under investigation for haemoptysis, but found to have no respiratory pathology, were compared to MDM from healthy volunteers by whole genome transcriptional profiling before and after innate immune stimulation. We found that freshly isolated AM exhibited a marked pro-inflammatory transcriptional signature. High levels of basal pro-inflammatory gene expression gave the impression of attenuated responses to lipopolysaccharide (LPS) and the RNA analogue, poly IC, but in rested cells pro-inflammatory gene expression declined and transcriptional responsiveness to these stimuli was restored. In comparison to MDM, both freshly isolated and rested AM showed upregulation of MHC class II molecules. In most experimental paradigms ex vivo adherent AM are used immediately after isolation. Therefore, the confounding effects of their pro-inflammatory profile at baseline need careful consideration. Moreover, despite the prevailing view that AM have an anti-inflammatory bias, our data clearly show that they can adopt a striking pro-inflammatory phenotype, and may have greater capacity for presentation of exogenous antigens than MDM
    corecore