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ABSTRACT
The role of the deiodinases D1, D2, and D3 in the tissue-specific and

time-dependent regulation of thyroid hormone bioactivity during fetal
development has been investigated in animals but little is known
about the ontogeny of these enzymes in humans. We analyzed D1, D2,
and D3 activities in liver microsomes from 10 fetuses of 15–20 weeks
gestation and from 8 apparently healthy adult tissue transplant do-
nors, and in liver homogenates from 2 fetuses (20 weeks gestation),
5 preterm infants (27–32 weeks gestation), and 13 term infants who
survived up to 39 weeks postnatally. D1 activity was determined
using 1 mM [39,59-125I]rT3 as substrate and 10 mM dithiothreitol (DTT)
as cofactor, D2 activity using 1 nM [39,59-125I]T4 and 25 mM DTT in the
presence of 1 mM 6-propyl-2-thiouracil (to block D1 activity) and 1 mM
T3 (to block D3 activity), and D3 activity using 10 nM [3,5-125I]T3 and
50 mM DTT, by quantitation of the release of 125I2. The assays were
validated by high performance liquid chromatography of the products,
and kinetic analysis [Michaelis-Menten constant (Km) of rT3 for D1:

0.5 mM; Km of T3 for D3: 2 nM]. In liver homogenates, D1 activity was
not correlated with age, whereas D3 activity showed a strong negative
correlation with age (r 20.84), with high D3 activities in preterm
infants and (except in 1 infant of 35 weeks) absent D3 activity in
full-term infants. In microsomes, D1 activities amounted to 4.3–60
pmol/min/mg protein in fetal livers and to 170–313 pmol/min/mg
protein in adult livers, whereas microsomal D3 activities were 0.15–
1.45 pmol/min/mg protein in fetuses and ,0.1 pmol/min/mg protein
in all but one adult. In the latter sample, D3 activity amounted to 0.36
pmol/min/mg protein. D2 activity was negligible in both fetal and
adult livers. These findings indicate high D1 and D3 activities in fetal
human liver, and high D1 and mostly absent D3 activities in adult
human liver. Therefore, the low serum T3 levels in the human fetus
appear to be caused by high hepatic (and placental) D3 activity rather
than caused by low hepatic D1 activity. The occasional expression of
D3 in adult human liver is intriguing and deserves further investi-
gation. (J Clin Endocrinol Metab 83: 2868–2874, 1998)

THE bioactivity of thyroid hormone is regulated impor-
tantly by enzymatic deiodination in peripheral tissues

(1–4). The prohormone T4 is converted by outer ring deio-
dination (ORD) to the active hormone T3. Both T4 and T3 are
inactivated by inner ring deiodination (IRD) to rT3 and 3,39-
diiodothyronine (3,39-T2), respectively. The latter metabolite
is also produced by ORD of rT3. The three iodothyronine
deiodinases involved in these processes have been charac-
terized as homologous transmembrane selenoproteins that
require thiols as cofactor (1– 4). The type I deiodinase (D1)
has both ORD and IRD activity. It is located in liver,
kidney, and thyroid and is important for plasma T3 pro-
duction. rT3 is the preferred substrate for D1, although the
deiodination of other iodothyronines is greatly accelerated
by sulfate conjugation of their 49-hydroxyl group (1–5). D1
shows Michaelis-Menten constant (Km) values for its sub-
strates in the micromolar range, and the enzyme is po-
tently inhibited by 6-propyl-2-thiouracil (PTU) (1– 4). The

type II deiodinase (D2) catalyzes only ORD of iodothy-
ronines. D2 activity is found in brain, pituitary, and brown
adipose tissue, whereas D2 messenger RNA (mRNA) has
recently also been detected in human heart, skeletal mus-
cle, and thyroid (6 – 8). D2 appears particularly important
for local T3 production in these tissues. It shows preference
for T4 over rT3 as the substrate, with Km values in the
nanomolar range, and is insensitive to PTU inhibition
(1– 4). The type III deiodinase (D3) has only IRD activity;
it is present among other tissues in brain, skin, and intes-
tine (see also below). It shows preference for T3 over T4 as
the substrate, with Km values in the nanomolar range, and
is not inhibited by PTU (1– 4). The expression of these
enzymes is regulated by thyroid state. In general, D1 and
D3 activities are increased and D2 activity is decreased in
hyperthyroidism, whereas the opposite changes are ob-
served in hypothyroidism (1– 4).

The role of the deiodinases in the tissue-specific and time-
dependent regulation of thyroid hormone bioactivity during
fetal development has been investigated in experimental an-
imals (9–11), but little is known about the ontogeny of these
enzymes in human development. In animals and humans,
fetal serum T3 is low and increases only at the end of ges-
tation and in the neonatal period (11–13). Conversely, fetal
serum rT3 is high and decreases in the late fetal and early
neonatal period (11–13). High levels of iodothyronine sul-
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fates, such as T4S, T3S, rT3S and 3,39-T2S, have been docu-
mented in human and sheep fetal serum (11, 12, 14–18).
Because hepatic D1 is important for production of serum T3
and for clearance of serum rT3 and iodothyronine sulfates
(1–5), and because hepatic D1 activity is only expressed to-
wards the end of fetal development, at least in rats and sheep
(9, 11), it is generally believed that the low fetal serum T3 and
high fetal serum rT3 and sulfates reflect a low hepatic D1
activity. However, high D3 activity has been detected in
human, rat, and guinea pig placenta (19–24); fetal rat brain
(25, 26) and intestine (27); and embryonic chicken liver (28,
29). Therefore, the low T3 and high rT3 levels in human fetal
serum may also be caused by rapid degradation of serum T3
and production of serum rT3 in placenta (23, 24) and possibly
other tissues, such as liver. The purpose of the present study
was to obtain a better understanding of the ontogeny of D1
and D3 activities in human liver. The results indicate a more
important role for hepatic D3 activity in the regulation of
thyroid hormone bioactivity during human fetal develop-
ment than previously assumed.

Materials and Methods
Materials

Nonradioactive iodothyronines were obtained from Henning Berlin
(Berlin, Germany); [3,5-125I]T3 ('35 Ci/mmol) was obtained from Dr. R.
Thoma of Formula (Berlin, Germany) courtesy of Dr. G. Decker of
Henning Berlin. [39,59-125I]T4, [39-125I]T3, and [39,59-125I]rT3 ('2000 Ci/
mmol) were obtained from Amersham (Little Chalfont, UK) or prepared
in our laboratory by radioiodination of T3, 3,5-T2, and 3,39-T2, respec-
tively, as described previously (30). [125I]T3 could be used without fur-
ther purification, but [125I]T4 and [125I]rT3 were purified on Sephadex
LH-20 before each experiment (30). N-bromoacetyl-[39-125I]T3 (BrAc[39-
125I]T3) and BrAc[39,59-125I]T4 were prepared as described previously
(31). Dithiothreitol (DTT) and PTU were obtained from Sigma (St. Louis,
MO); electrophoresis grade SDS-PAGE reagents, protein markers, and
protein assay reagent from Bio-Rad (Richmond, IL); Sephadex LH-20
from Pharmacia (Uppsala, Sweden); and Coomassie brilliant blue R-250
from Merck (Darmstadt, Germany).

Tissues

Liver tissue was obtained from 10 fetuses (F1–F10) of 15–20 weeks
gestation as well as from 8 apparently healthy tissue transplant donors
(A1–A8): 4 males (29–46 yr of age) and 4 females (34–52 yr of age).
Microsomes were prepared by differential centrifugation as previously
described (32), suspended in 100 mm phosphate (pH 7.2), and 2 mm
EDTA (P100E2), containing 1 mm DTT, at a protein concentration of '10
mg/ml. Liver tissue was also obtained at autopsy from 2 fetuses of 20
weeks gestation, 5 preterm infants of 27–32 weeks gestation, and 13 term
infants who survived up to 39 weeks postnatally. Postmortem time
varied from 1–48 h. These tissues were homogenized in 10 vol P100E2,
containing 10 mm DTT, yielding protein concentrations of '10 mg/mL.
Aliquots of microsomes and homogenates were snap-frozen on dry ice
and stored at 280 C until further analysis. Protein concentration was
determined using Bio-Rad protein assay reagent and BSA as the stan-
dard. Approval for this study was obtained from the Tayside Committee
on Medical Research Ethics.

Deiodinase assays

Deiodinase activities were determined by analysis of the release of
radioiodide by ORD of outer ring-labeled T4 or rT3 or by IRD of inner
ring-labeled T3 during incubation for 30–60 min at 37 C with liver
homogenates or microsomes and DTT in 0.2 mL P100E2 (32). D1 activity
was assayed using 1 mm (105 cpm) [39,59-125I]rT3 and 10 mm DTT, D2
activity using 1 nm (105 cpm) [39,59-125I]T4 and 25 mm DTT in the
presence of 1 mm PTU (to block D1 activity) and 1 mm T3 (to block D3

activity), and D3 activity using 10 nm (105 cpm) [3,5-125I]T3 and 50 mm
DTT. Reactions were stopped at 0 C by addition of 0.1 mL 5% (wt/vol)
BSA in water followed by addition of 0.5 mL 10% (wt/vol) trichloro-
acetic acid in water. Precipitated 125I-labeled iodothyronines were re-
moved by centrifugation, and the 125I2 released was further purified
from the supernatant on Sephadex LH-20 microcolumns (bed volume
'0.25 mL), equilibrated and eluted with 0.1 m HCl (32).

The assays were validated by high performance liquid chromatog-
raphy (HPLC) analysis of the deiodination products of T4, T3, and rT3.
For this, microsomes were incubated with a) 1 mm [39,59-125I]rT3 and 10
mm DTT, b) 1 nm [39,59-125I]T4 and 25 mm DTT in the absence or presence
of 1 mm PTU and/or 1 mm T3, or c) 10 nm [3,5-125I]T3 and 50 mm DTT
in 0.2 mL P100E2. The reactions were stopped by addition of 0.2 mL
ice-cold methanol. After centrifugation, 0.2 mL of the supernatant was
mixed with 0.3 mL 0.02 m ammonium acetate (pH 4), and 0.1 mL of the
mixture was applied to a 250 3 4.6 mm Symmetry C18 column (Waters,
Etten-Leur, The Netherlands) connected to an Alliance HPLC system
(Waters) and eluted isocratically with a mixture of acetonitrile and 0.02
m ammonium acetate (33:67, vol/vol) at a flow of 1.2 mL/min. Fractions
of 0.3 min were collected and counted for radioactivity.

Affinity labeling

BrAc[125I]T3 or BrAc[125I]T4 (0.1 mCi) was reacted for 20 min at 37 C
with 0.1 mg microsomal protein in 0.1 mL P100E2 containing 1 mm DTT
(30). The reaction was stopped by addition of 50 mL SDS-sample buffer
containing 30% b-mercaptoethanol and treatment for 5 min at 100 C.
Proteins were separated overnight by SDS-PAGE in a 16-cm 10% poly-
acrylamide gel. Gels were stained with Coomassie brilliant blue R-250
at 60 C, dried at 80 C under vacuum, and autoradiographed at 270 C
using Fuji RX film (Fuji Medical Systems, Houten, The Netherlands).
Apparent molecular mass (Mr) was determined by interpolation with
protein markers.

Results

Deiodinase activities were determined in liver homoge-
nates from 2 fetuses of 20 weeks gestation, 5 preterm infants
of 27–32 weeks gestation who died soon after birth, and 13
term infants who survived up to 39 weeks postnatally.
Causes of death included congenital defects, infection, met-
abolic storage disease, sudden death, and prematurity. The
tissues were obtained at autopsy with a postmortem time of
1–48 h. Figure 1A shows the D1 activities of these liver
homogenates as a function of gestational/postnatal age.
Considering the varying conditions of the tissues, the ap-
preciable scatter of the data was not surprising. However, it
is clear that hepatic D1 activity demonstrated little or no
dependence on age in the range studied, with activities at 20
weeks gestation being very similar to those observed after 20
weeks postnatally. D1 activity was not correlated with post-
mortem time (not shown). Figure 1B shows the hepatic D3
activities in these same tissue homogenates as a function of
age. In spite of the considerable scatter, there was clearly a
decrease in hepatic D3 activity with age. In general, high D3
activities were observed during fetal development, which
virtually disappeared after birth in term infants. Hepatic D3
activity was unexpectedly low for age in 1 infant born at 27
weeks gestation who died from intrauterine infection. Inter-
estingly, D3 activity was unexpectedly high for age in a term
infant with GM1 gangliosidosis who died at 35 weeks of age
from pneumonia. Hepatic D3 activity was not correlated
with postmortem time (data not shown). D2 activities in
these liver homogenates were negligible (data not shown).

Figure 2 shows the microsomal D1 and D3 activities in five
representative fetal liver samples obtained at 15–20 weeks
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gestation as well as in five representative adult liver samples.
Again, there was considerable scatter in both D1 and D3
activities in the fetal samples. There was no significant re-
lationship of either D1 or D3 activity with fetal age (data not
shown). However, D1 and D3 activities were significantly
correlated (r 5 0.85; data not shown), suggesting that the
variation in both deiodinase activities was related to the
quality of the tissues. Hepatic D1 activity in the adult tissue
transplant donors showed a relatively narrow range of vari-

ation. D1 activity in fetal liver amounted up to 24% of that
in adult liver. In seven of the eight adult liver samples D3
activity was very low (Fig. 2 and data not shown). However,
significant hepatic D3 activity was detected in the remaining
adult tissue sample (A1), which amounted to 56% of the
mean fetal hepatic D3 activity. D2 activity was negligible in
both fetal and adult liver (data not shown).

The different deiodinase assays were validated by HPLC
analysis. The results demonstrated equivalent production of
radiolabeled iodide and 3,39-T2 from [39,59-125I]rT3 in the D1
assay as well as from [3,5-125I]T3 in the D3 assay (data not
shown). Deiodination of [39,59-125I]T4 by fetal liver micro-
somes in the absence of PTU or unlabeled T3 resulted in the
formation of radioactive rT3, 3,39-T2, and iodide, suggesting
IRD of T4 by D3 to rT3 and subsequent ORD of rT3 by D1 to
3,39-T2 and iodide (Fig. 3A). Some labeled 39-T1 was also
produced presumably by IRD of 3,39-T2 by D3. Addition of
PTU did not affect the IRD of T4 but partially inhibited the
further ORD of rT3 (Fig. 3B). In the presence of 1 mm unla-
beled T3, conversion of [125I]T4 to [125I]rT3 was completely
inhibited, and a very small amount of [125I]T3 was found to
accumulate, apparently caused by inhibition of its degradation
by D3 (Fig. 3C). Addition of both PTU and unlabeled T3 resulted
in the complete inhibition of T4 metabolism (Fig. 3D).

Figure 4 shows the double-reciprocal plots of the deiodi-
nation rates of rT3 and T3 by fetal and adult liver microsomes
as a function of substrate concentration. Although the max-
imum velocity (Vmax) value for rT3 deiodination estimated
from these plots was higher in adult than in fetal liver, the
apparent Km value for rT3 amounted to 0.5 mm with both
representative tissue samples (Fig. 4A). The deiodination of
rT3 was completely inhibited by 1 mm PTU in both fetal and
adult liver (not shown). The deiodination of T3 by a repre-
sentative fetal liver sample and by adult liver sample A1 was
characterized by very similar Km values, i.e. 1.4 and 2.5 nm,

FIG. 1. D1 (A) and D3 (B) activities in human liver homogenates as
function of gestational/postnatal age. Reaction conditions: 1 mM [39,59-
125I]rT3 and 10 mM DTT (A) or 10 nM [3,5-125I]T3 and 50 mM DTT (B),
0.25 mg protein/mL, and 30 min incubation. E, Outliers with strongly
deviating D3 activities.

FIG. 2. Microsomal D1 and D3 activities in representative fetal (F) or
adult (A) livers. Reaction conditions: D1, 1 mM [39,59-125I]rT3, 10 mM
DTT, and 50 mg (F) or 25 mg (A) protein/mL. D3, 10 nM [3,5-125I]T3,
50 mM DTT, and 50 mg (F) or 250 mg (A) protein/mL. Incubation time
was 30 min.
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respectively (Fig. 4B). In both cases, deiodination of T3 was
not affected by the addition of 1 mm PTU (not shown).

Figure 5 shows the results of the affinity labeling of fetal
and adult human liver microsomal proteins by BrAc[125I]T4
or BrAc[125I]T3. As demonstrated previously (30), the radio-
active band of '27 kDa represents the affinity labeling of D1.
These findings, therefore, suggest similar levels of D1 protein

in fetal and adult human liver. No evidence was obtained
for affinity labeling of D3 with either BrAc[125I]T3 or
BrAc[125I]T4, which is in agreement with our previous failure
to identify D3 in rat placenta and embryonic chicken liver
using these affinity labels (33).

Northern analysis of RNA isolated from two fetal and two
adult human liver samples using human D1 and D3 com-

FIG. 3. HPLC analysis of deiodination products of T4 formed during incubation with fetal human liver microsomes and DTT in absence or
presence of PTU and/or unlabeled T3. Reaction conditions: 1 nM [39,59-125I]T4, 25 mM DTT and 250 mg protein/mL, without PTU or T3 (A), with
1 mM PTU (B), with 1 mM T3 (C), or with 1 mM PTU and 1 mM T3 (D). Incubation time was 30 min. Extraction and HPLC analysis was done
as described in Materials and Methods.
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plementary DNA probes indicated extensive degradation of
RNA and suggested expression of both D1 and D3 mRNA in
fetal liver and expression of only D1 mRNA in adult liver
(data not shown).

Discussion

Thyroid hormone bioavalability in the human fetus is de-
pendent on, among other things, a) supply of maternal hor-
mone through the placenta, b) hormone production by the

fetal thyroid gland, c) the activities of thyroid hormone-
metabolizing enzymes such as deiodinases and sulfotrans-
ferases in fetal tissues, d) the activities of plasma membrane
transporters that mediate uptake of iodothyronines from
serum into the tissues, e) exchange (uptake and excretion) of
hormone with the amniotic fluid, and f) return of fetal hor-
mone via the placenta to the mother (11–13).

T4 production by the human fetal thyroid gland has been
demonstrated after 10–12 weeks of gestation (11–13). Before
this period all T4 in the fetal circulation is derived from
maternal supply across the placenta. However, maternal
supply probably remains an important source of fetal thyroid
hormone after development of the fetal thyroid gland, as
evidenced by substantial T4 levels in newborns with thyroid
agenesis or a complete hormone synthesis defect (34). In view
of the available T4 levels, serum T3 is low and serum rT3 is
high in the human fetus, in particular during the first two
trimesters (11–13, 35). This can be explained by the well-
documented high D3 activity in the placenta, which pre-
sumably converts a large proportion of T4 to rT3 and of T3 to
3,39-T2 during placental transfer (19–24). In addition, find-
ings of high D3 activities in fetal rat brain (25–27) and in-
testine (27) and in embryonic chicken liver (28, 29) have
suggested that significant D3 activity may also be expressed
in fetal human tissues. Furthermore, in analogy with the
ontogeny of D1 expression in rat liver (9, 27), it has been
generally assumed that hepatic T3 production and rT3 clear-
ance remain low until D1 starts to be expressed towards the
end of human fetal development. This is supported by the
high levels of T4S, T3S, rT3S, and 3,39-T2S in human fetal
serum (14–18), because these conjugates are cleared impor-
tantly by hepatic D1 (5).

Because very little is known about the potential role of
hepatic D1 and D3 in the regulation of thyroid hormone
bioactivity during human fetal development, we carried out
the present study. Although the autopsy samples were ob-

FIG. 4. Double-reciprocal plots of deiodination of rT3 (A) or T3 (B) by
fetal (F8) or adult (A1 and A4) human liver microsomes as function
of substrate concentration. Reaction conditions: A, 0.1–1 mM [39,59-
125I]rT3, 10 mM DTT, and 50 mg (F8) or 20 mg (A4) protein/mL; B,
1.5–15 nM [3,5-125I]T3, 50 mM DTT, and 25 mg (F8) or 100 mg (A1)
protein/mL. Incubation time was 30 min.

FIG. 5. Affinity labeling of fetal and adult liver microsomal proteins
with BrAc[125I]T4 or BrAc[125I]T3. Position of marker proteins and
their Mr values as well as labeled D1 protein (arrow) are indicated.
Reaction conditions: 0.1 mCi BrAc[125I]T4 or BrAc[125I]T3, 0.1 mg
protein, 1 mM DTT in 0.1 mL P100E2, and 20 min incubation. Elec-
trophoresis and autoradiography were done as described in Materials
and Methods.

2872 RICHARD ET AL. JCE & M • 1998
Vol 83 • No 8

 at Medical Library Erasmus MC on December 11, 2006 jcem.endojournals.orgDownloaded from 

http://jcem.endojournals.org


tained from sick infants, and the condition of the tissues,
when they were collected, was in some cases suboptimal, the
results clearly indicate that D1 activity already is expressed
in the second trimester at levels similar to those observed in
infants who survived up to 39 weeks postnatally. Another
remarkable finding was the high D3 activity in liver homog-
enates from preterm infants, which was not detectable in
livers from term born infants with one exception (see below).
These findings were confirmed by comparing microsomal
deiodinase activities in fetal livers of 15–20 weeks gestation
with those determined in liver samples from apparently
healthy adult tissue, showing that D1 activity in fetal liver
amounted to at least 20% of that in adult liver. Furthermore,
in contrast to the high D3 activities in fetal liver, D3 activity
was absent in adult liver with one exception (see below).
These findings strongly suggest that the low serum T3 and
high serum rT3 levels in the human fetus are not so much
caused by low hepatic D1 activity but rather to high D3
activity in the liver in addition to the placenta and possibly
other tissues. The relative importance of the D3 activity in the
fetal liver vs. that in the placenta is difficult to assess. The
specific activity of the enzyme is similar in these tissues, but
because of the difference in tissue weight, the total amount
of enzyme is larger in placenta than in fetal liver.

The expression of hepatic D1 and D3 activities during
human fetal development is remarkably different from that
in rats (9, 27) but resembles the ontogeny of these enzymes
in the chicken liver (28, 29, 36). In the chicken, hepatic D1
activity and mRNA level gradually increase until the end
(day 20) of embryonic development (E20) (29, 36). In contrast,
hepatic D3 activity and mRNA level strongly increase until
E17, which is followed by a steep decline after E18 to almost
undetectable levels at internal pipping on E20 (29, 36). This
fall in hepatic D3 activity is associated with a dramatic in-
crease in serum T3 levels, suggesting that serum T3 in the
chicken embryo is determined to an important extent
through regulation of its degradation by hepatic D3 activity
(29, 36). It has been demonstrated that GH plays an essential
role in the down-regulation of D3 expression in chicken liver
at the end of embryonic development (37). Interestingly,
Darras et al. (38) have also shown an acute and profound
decrease in hepatic D3 activity after administration of dexa-
methasone to E18 chicken embryos. This was accompanied
by a marked increase in serum T3 and a marked decrease in
serum rT3 (38). It is tempting to speculate that part of the
beneficial effect of the antenatal administration of glucocor-
ticosteroids to mothers in case of an imminent premature
delivery on the postnatal development of the infant (39) is
caused by this down-regulation of hepatic D3 activity and
consequent increase in serum T3 levels.

It is generally believed that the high D3 activity in placenta,
fetal liver, and possibly other fetal tissues protects the fetus
during critical stages of development against active thyroid
hormone (11–13, 23). D3 is an important enzyme for the
irreversible degradation of thyroid hormone, because the
products generated from T4 and T3 by this enzyme, i.e. rT3
and 3,39-T2, have very little affinity for the nuclear T3 receptor
(TR) nor can they be converted to TR-binding ligands (40). T3
stimulates the differentiation of cells, and premature expo-
sure of growing tissues to active hormone may thus result in

congenital abnormalities. Sulfation is another pathway by
which thyroid hormone is inactivated, because T3S has lost
its affinity for TR (41). Furthermore, in adult subjects, sul-
fation represents the first step in a pathway leading to the
irreversible degradation of thyroid hormone, because IRD of
T4S and T3S by D1 is greatly accelerated compared with the
deiodination of the nonsulfated iodothyronines (5). The im-
portance of D1 for the clearance of serum T4S, T3S, rT3S, and
3,39-T2S is indicated by the marked increases in the serum
levels of these conjugates after inhibition of D1 by PTU and,
in particular, iopanoic acid (14, 42–44). The high levels of the
iodothyronine sulfates in human fetal serum have also been
explained by the reduced clearance of these conjugates pre-
sumably caused by low hepatic D1 expression, although
evidence has also been reported that production of the sul-
fates is increased in fetal sheep (11, 45). It has been speculated
that T3S represents a reservoir of inactive hormone from
which active T3 may be released by sulfatases expressed in
different tissues (5, 46). Our results show that hepatic D1
activity may be somewhat lower in the human fetus than in
the adult but not to the extent that would explain the strongly
increased T4S, T3S, rT3S, and 3,39-T2S levels in fetal serum.
This suggests that additional mechanisms contribute to the
elevation of serum iodothyronine sulfate levels in human
fetal serum, such as decreased expression of plasma mem-
brane transporters involved in tissue uptake of these conju-
gates (3).

Another surprising finding of our study is the occasional
expression of hepatic D3 in livers from older subjects. If this
represents a defect in the mechanism that normally shuts off
D3 gene expression in the liver after birth or, more likely,
reexpression of the gene under pathological conditions, re-
mains to be explored. In this respect, it should be mentioned
that high D3 activity has been detected in a monkey hepa-
tocarcinoma cell line (47). It is also tempting to speculate that,
like other fetoproteins, hepatic D3 expression may be stim-
ulated by cytokines (48). If this is the case, changes in
peripheral thyroid hormone metabolism in the low T3 syn-
drome associated with nonthyroidal illness (49) may include
up-regulation of hepatic D3 activity.

D2 activity was undectable in both fetal and adult human
liver samples. We cannot exclude, however, that D2 activity
may be expressed in human fetal liver but is lost caused by
postmortem inactivation (50).

In conclusion, we have shown that expression of both D1
and D3 in human fetal liver is higher than previously as-
sumed. This suggests that the low T3 and high rT3 levels in
human fetal serum is not so much caused by low hepatic D1
expression but rather to high D3 activity in fetal human liver
in addition to placenta and perhaps other fetal tissues. The
exact role of D3 expression in the tissue-specific and stage-
dependent regulation of thyroid hormone bioactivity during
human fetal development remains to be fully investigated.
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