6 research outputs found

    Inter-rater reliability of categorical versus continuous scoring of fish vitality: does it affect the utility of the reflex action mortality predictor (RAMP) approach?

    Get PDF
    Scoring reflex responsiveness and injury of aquatic organisms has gained popularity as predictors of discard survival. Given this method relies upon the individual interpretation of scoring criteria, an evaluation of its robustness is done here to test whether protocol-instructed, multiple raters with diverse backgrounds (research scientist, technician, and student) are able to produce similar or the same reflex and injury score for one of the same flatfish (European plaice, Pleuronectes platessa) after experiencing commercial fishing stressors. Inter-rater reliability for three raters was assessed by using a 3-point categorical scale (‘absent’, ‘weak’, ‘strong’) and a tagged visual analogue continuous scale (tVAS, a 10 cm bar split in three labelled sections: 0 for ‘absent’, ‘weak’, ‘moderate’, and ‘strong’) for six reflex responses, and a 4-point scale for four injury types. Plaice (n = 304) were sampled from 17 research beam-trawl deployments during four trips. Fleiss kappa (categorical scores) and intra-class correlation coefficients (ICC, continuous scores) indicated variable inter-rater agreement by reflex type (ranging between 0.55 and 0.88, and 67% and 91% for Fleiss kappa and ICC, respectively), with least agreement among raters on extent of injury (Fleiss kappa between 0.08 and 0.27). Despite differences among raters, which did not significantly influence the relationship between impairment and predicted survival, combining categorical reflex and injury scores always produced a close relationship of such vitality indices and observed delayed mortality. The use of the continuous scale did not improve fit of these models compared with using the reflex impairment index based on categorical scores. Given these findings, we recommend using a 3-point categorical over a continuous scale. We also determined that training rather than experience of raters minimised inter-rater differences. Our results suggest that cost-efficient reflex impairment and injury scoring may be considered a robust technique to evaluate lethal stress and damage of this flatfish species on-board commercial beam-trawl vessels

    Fishing activities

    No full text
    Unlike the major anthropogenic changes that terrestrial and coastal habitats underwent during the last centuries such as deforestation, river engineering, agricultural practices or urbanism, those occurring underwater are veiled from our eyes and have continued nearly unnoticed. Only recent advances in remote sensing and deep marine sampling technologies have revealed the extent and magnitude of the anthropogenic impacts to the seafloor. In particular, bottom trawling, a fishing technique consisting of dragging a net and fishing gear over the seafloor to capture bottom-dwelling living resources has gained attention among the scientific community, policy makers and the general public due to its destructive effects on the seabed. Trawling gear produces acute impacts on biota and the physical substratum of the seafloor by disrupting the sediment column structure, overturning boulders, resuspending sediments and imprinting deep scars on muddy bottoms. Also, the repetitive passage of trawling gear over the same areas creates long-lasting, cumulative impacts that modify the cohesiveness and texture of sediments. It can be asserted nowadays that due to its recurrence, mobility and wide geographical extent, industrial trawling has become a major force driving seafloor change and affecting not only its physical integrity on short spatial scales but also imprinting measurable modifications to the geomorphology of entire continental margins.Fil: Oberle, F.K.J.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Puig, P.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Martín de Nascimento, Jacobo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentin
    corecore