423 research outputs found

    Relativistic Proton Production During the 14 July 2000 Solar Event: The Case for Multiple Source Mechanisms

    Full text link
    Protons accelerated to relativistic energies by transient solar and interplanetary phenomena caused a ground-level cosmic ray enhancement on 14 July 2000, Bastille Day. Near-Earth spacecraft measured the proton flux directly and ground-based observatories measured the secondary responses to higher energy protons. We have modelled the arrival of these relativistic protons at Earth using a technique which deduces the spectrum, arrival direction and anisotropy of the high-energy protons that produce increased responses in neutron monitors. To investigate the acceleration processes involved we have employed theoretical shock and stochastic acceleration spectral forms in our fits to spacecraft and neutron monitor data. During the rising phase of the event (10:45 UT and 10:50 UT) we find that the spectrum between 140 MeV and 4 GeV is best fitted by a shock acceleration spectrum. In contrast, the spectrum at the peak (10:55 UT and 11:00 UT) and in the declining phase (11:40 UT) is best fitted with a stochastic acceleration spectrum. We propose that at least two acceleration processes were responsible for the production of relativistic protons during the Bastille Day solar event: (1) protons were accelerated to relativistic energies by a shock, presumably a coronal mass ejection (CME). (2) protons were also accelerated to relativistic energies by stochastic processes initiated by magnetohydrodynamic (MHD) turbulence.Comment: 38 pages, 9 figures, accepted for publication in the Astrophysical Journal, January, 200

    A stacking-fault based microscopic model for platelets in diamond

    Get PDF
    We propose a new microscopic model for the {001}\{001\} planar defects in diamond commonly called platelets. This model is based on the formation of a metastable stacking fault, which can occur because of the ability of carbon to stabilize in different bonding configurations. In our model the core of the planar defect is basically a double layer of three-fold coordinated sp2sp^2 carbon atoms embedded in the common sp3sp^3 diamond structure. The properties of the model were determined using {\it ab initio} total energy calculations. All significant experimental signatures attributed to the platelets, namely, the lattice displacement along the [001][001] direction, the asymmetry between the [110][110] and the [11ˉ0][1\bar{1}0] directions, the infrared absorption peak B′B^\prime, and broad luminescence lines that indicate the introduction of levels in the band gap, are naturally accounted for in our model. The model is also very appealing from the point of view of kinetics, since naturally occurring shearing processes will lead to the formation of the metastable fault.Comment: 5 pages, 4 figures. Submitted for publication on August 2nd, 200

    Stranding collections indicate broad-scale connectivity across the range of a pelagic marine predator, the Atlantic white-sided dolphin (Lagenorhynchus acutus)

    Get PDF
    Understanding the extent of population genetic connectivity in highly mobile marine species is vital for delineating management units. However, obtaining samples for generating genetic data is challenging for species inhabiting inaccessible pelagic waters. As a result, management strategies do not always align with underlying population biology. Marine strandings provide an accessible and cost-effective sample source for research on elusive cetaceans and can be used collaboratively among stranding networks to generate ecosystem-wide population genetic assessments. Here, we used samples collected from strandings and free-ranging individuals across the North Atlantic to investigate population structure, genetic diversity, and individual relatedness in the Atlantic white-sided dolphin (AWSD; Lagenorhynchus acutus), a widely distributed marine predator. Mitochondrial DNA sequences and nuclear DNA single-nucleotide polymorphisms showed a complete lack of population differentiation across the species’ range, implying an unusual pattern of strong connectivity. No differences in genetic diversity among geographic regions and weak within-group relatedness further support the existence of species-wide panmixia in AWSD. This study emphasises the value of long-term stranding collections for cetacean research and has important implications for AWSD conservation management

    POLG2 deficiency causes adult-onset syndromic sensory neuropathy, ataxia and parkinsonism

    Get PDF
    Objective: Mitochondrial dysfunction plays a key role in the pathophysiology of neurodegenerative disorders such as ataxia and Parkinson's disease. We describe an extended Belgian pedigree where seven individuals presented with adult-onset cerebellar ataxia, axonal peripheral ataxic neuropathy, and tremor, in variable combination with parkinsonism, seizures, cognitive decline, and ophthalmoplegia. We sought to identify the underlying molecular etiology and characterize the mitochondrial pathophysiology of this neurological syndrome. Methods: Clinical, neurophysiological, and neuroradiological evaluations were conducted. Patient muscle and cultured fibroblasts underwent extensive analyses to assess mitochondrial function. Genetic studies including genome-wide sequencing were conducted. Results: Hallmarks of mitochondrial dysfunction were present in patients' tissues including ultrastructural anomalies of mitochondria, mosaic cytochrome c oxidase deficiency, and multiple mtDNA deletions. We identified a splice acceptor variant in POLG2, c.970-1G>C, segregating with disease in this family and associated with a concomitant decrease in levels of POLG2 protein in patient cells. Interpretation: This work extends the clinical spectrum of POLG2 deficiency to include an overwhelming, adult-onset neurological syndrome that includes cerebellar syndrome, peripheral neuropathy, tremor, and parkinsonism. We therefore suggest to include POLG2 sequencing in the evaluation of ataxia and sensory neuropathy in adults, especially when it is accompanied by tremor or parkinsonism with white matter disease. The demonstration that deletions of mtDNA resulting from autosomal-dominant POLG2 variant lead to a monogenic neurodegenerative multicomponent syndrome provides further evidence for a major role of mitochondrial dysfunction in the pathomechanism of nonsyndromic forms of the component neurodegenerative disorders

    Solar Magnetic Polarity Effect on Neutron Monitor Count Rates: Comparing Latitude Surveys and Antarctic Stations

    Full text link
    The Galactic cosmic ray spectrum manifests pronounced variations over the 11-year sunspot cycle and more subtle variations over the 22-year solar magnetic cycle. An important tool to study these variations is repeated latitude surveys with neutron monitors (NMs) onboard icebreakers in conjunction with land-based references. We revisit 13 annual latitude surveys from 1994 to 2007 using reference data from the Mawson NM instead of McMurdo NM (which closed in 2017). We then consider two more latitude surveys (2018 and 2019) with a monitor similar to the 3NM64 in the previous surveys but without lead rings around the central tube, a so-called ``semi-leaded neutron monitor.'' The new surveys extend the linear relationship among data taken at different cutoff rigidity ranges. They also confirm the ``crossover'' measured near solar minima during epochs of opposite solar magnetic polarity and the absence of a crossover for epochs having the same solar magnetic polarity.Comment: Accepted for publication in Astrophys.

    A CX3CRI Reporter hESC Line Facilitates Integrative Analysis of In-Vitro-Derived Microglia and Improved Microglia Identity upon Neuron-Glia Co-culture

    Get PDF
    Multiple protocols have been published for generation of iMGLs from hESCs/iPSCs. To date, there are no guides to assist researchers to determine the most appropriate methodology for microglial studies. To establish a framework to facilitate future microglial studies, we first performed a comparative transcriptional analysis between iMGLs derived using three published datasets, which allowed us to establish the baseline protocol that is most representative of bona fide human microglia. Secondly, using CRISPR to tag the classic microglial marker CX3CR1 with nanoluciferase and tdTomato, we generated and functionally validated a reporter ESC line. Finally, using this cell line, we demonstrated that co-culture of iMGL precursors with human glia and neurons enhanced transcriptional resemblance of iMGLs to ex vivo microglia. Together, our comprehensive molecular analysis and reporter cell line are a useful resource for neurobiologists seeking to use iMGLs for disease modeling and drug screening studies.Peer reviewe

    The Future of High Energy Physics Software and Computing

    Full text link
    Software and Computing (S&C) are essential to all High Energy Physics (HEP) experiments and many theoretical studies. The size and complexity of S&C are now commensurate with that of experimental instruments, playing a critical role in experimental design, data acquisition/instrumental control, reconstruction, and analysis. Furthermore, S&C often plays a leading role in driving the precision of theoretical calculations and simulations. Within this central role in HEP, S&C has been immensely successful over the last decade. This report looks forward to the next decade and beyond, in the context of the 2021 Particle Physics Community Planning Exercise ("Snowmass") organized by the Division of Particles and Fields (DPF) of the American Physical Society.Comment: Computational Frontier Report Contribution to Snowmass 2021; 41 pages, 1 figure. v2: missing ref and added missing topical group conveners. v3: fixed typo
    • …
    corecore