237 research outputs found

    Socio-economic inequalities in physical activity practice among Italian children and adolescents: a cross-sectional study

    Get PDF
    Aim: The aim of the study was to evaluate whether socio-economic inequalities in the practice of physical activity existed among children and adolescents, using different indicators of socio-economic status (SES). Subjects and methods: Data were derived from the Italian National Health Interview Survey carried out in 2004–2005, which examined a large random sample of the Italian population using both an interviewer-administered and a self-compiled questionnaire. This study was based on a sample of 15,216 individuals aged 6–17 years. The practice of physical activity was measured on the basis of questions regarding frequency and intensity of activity during leisure time over the past 12 months. Parents’ educational and occupational level, as well as family’s availability of material resource, were used as indicators of SES. Multivariable logistic regression analyses were performed to estimate the contribution of each SES indicator to the practice of physical activity, adjusting for potential confounding factors. The results of the regression models are expressed as odds ratio (OR) with 95% confidence intervals (95% CI). Results: About 64% of children and adolescents in the sample declared that they participated in moderate or vigorous physical activity at least once a week. After adjustment for gender, age, parental attitudes towards physical activity and geographical area, the practice of physical activity increased with higher parental educational and occupational level and greater availability of material resources. Children and adolescents whose parents held a middle or high educational title were 80% more likely to practice moderate or vigorous physical activity than subjects whose parents had a lower level of education (OR = 1.80, 95% CI: 1.40–2.33), while subjects with unemployed parents had an odds of practicing moderate or vigorous physical activity 0.43 times that of those children whose parents belonged to the top job occupation category (administrative/professionals). Socio-economic differences were about the same when the practice of vigorous physical activity only was considered instead of that of moderate or vigorous physical activity. Conclusion: Interventions that promote the practice of physical activity, and especially those aimed at the wider physical and social environment, are strongly needed to contrast socio-economic differences in physical activity among children and adolescents

    Isolation of Monoclonal Antibodies with Predetermined Conformational Epitope Specificity

    Get PDF
    Existing technologies allow isolating antigen-specific monoclonal antibodies (mAbs) from B cells. We devised a direct approach to isolate mAbs with predetermined conformational epitope specificity, using epitope mimetics (mimotopes) that reflect the three-dimensional structure of given antigen subdomains. We performed differential biopanning using bacteriophages encoding random peptide libraries and polyclonal antibodies (Abs) that had been affinity-purified with either native or denatured antigen. This strategy yielded conformational mimotopes. We then generated mimotope-fluorescent protein fusions, which were used as baits to isolate single memory B cells from rhesus monkeys (RMs). To amplify RM immunoglobulin variable regions, we developed RM-specific PCR primers and generated chimeric simian-human mAbs with predicted epitope specificity. We established proof-of-concept of our strategy by isolating mAbs targeting the conformational V3 loop crown of HIV Env; the new mAbs cross-neutralized viruses of different clades. The novel technology allows isolating mAbs from RMs or other hosts given experimental immunogens or infectious agents

    Omalizumab may decrease IgE synthesis by targeting membrane IgE+ human B cells

    Get PDF
    Omalizumab, is a humanized anti-IgE monoclonal antibody used to treat allergic asthma. Decreased serum IgE levels, lower eosinophil and B cell counts have been noted as a result of treatment. In vitro studies and animal models support the hypothesis that omalizumab inhibits IgE synthesis by B cells and causes elimination of IgE-expressing cells either by induction of apoptosis or induction of anergy or tolerance. METHODS: We examined the influence of omalizumab on human tonsillar B cell survival and on the genes involved in IgE synthesis. Tonsillar B cells were stimulated with IL-4 plus anti-CD40 antibody to induce class switch recombination to IgE production in the presence or absence of omalizumab. Cell viability was assessed and RNA extracted to examine specific genes involved in IgE synthesis. CONCLUSIONS: We found that omalizumab reduced viable cell numbers but this was not through induction of apoptosis. IL-4R and germline Cϵ mRNA levels were decreased as well as the number of membrane IgE+ cells in B cells treated with omalizumab. These data suggest that omalizumab may decrease IgE synthesis by human B cells by specifically targeting membrane IgE-bearing B cells and inducing a state of anergy

    The gene encoding interleukin-13: a susceptibility locus for asthma and related traits

    Get PDF
    Asthma is a complex inflammatory disorder controlled by both genetic and environmental influences. Multiple genetic analyses have identified the T helper type 2 (Th2) cytokine gene cluster on chromosome 5q as a susceptibility locus for asthma. Recently, the Th2 cytokine interleukin-13 has been shown to be a critical mediator of the asthma phenotype in murine models. In this commentary we discuss several recent studies that have identified polymorphisms in the gene encoding interleukin-13. The consistent genetic associations of interleukin-13 with asthma and related traits across diverse ethnic populations in these studies provides strong support for the candidacy of this cytokine as a susceptibility locus for asthma and atopy on chromosome 5q31

    Helicobacter pylori's Unconventional Role in Health and Disease

    Get PDF
    The discovery of a bacterium, Helicobacter pylori, that is resident in the human stomach and causes chronic disease (peptic ulcer and gastric cancer) was radical on many levels. Whereas the mouth and the colon were both known to host a large number of microorganisms, collectively referred to as the microbiome, the stomach was thought to be a virtual Sahara desert for microbes because of its high acidity. We now know that H. pylori is one of many species of bacteria that live in the stomach, although H. pylori seems to dominate this community. H. pylori does not behave as a classical bacterial pathogen: disease is not solely mediated by production of toxins, although certain H. pylori genes, including those that encode exotoxins, increase the risk of disease development. Instead, disease seems to result from a complex interaction between the bacterium, the host, and the environment. Furthermore, H. pylori was the first bacterium observed to behave as a carcinogen. The innate and adaptive immune defenses of the host, combined with factors in the environment of the stomach, apparently drive a continuously high rate of genomic variation in H. pylori. Studies of this genetic diversity in strains isolated from various locations across the globe show that H. pylori has coevolved with humans throughout our history. This long association has given rise not only to disease, but also to possible protective effects, particularly with respect to diseases of the esophagus. Given this complex relationship with human health, eradication of H. pylori in nonsymptomatic individuals may not be the best course of action. The story of H. pylori teaches us to look more deeply at our resident microbiome and the complexity of its interactions, both in this complex population and within our own tissues, to gain a better understanding of health and disease

    A Day in the Life of Microcystis aeruginosa Strain PCC 7806 as Revealed by a Transcriptomic Analysis

    Get PDF
    The cyanobacterium, Microcystis aeruginosa, is able to proliferate in a wide range of freshwater ecosystems and to produce many secondary metabolites that are a threat to human and animal health. The dynamic of this production and more globally the metabolism of this species is still poorly known. A DNA microarray based on the genome of M. aeruginosa PCC 7806 was constructed and used to study the dynamics of gene expression in this cyanobacterium during the light/dark cycle, because light is a critical factor for this species, like for other photosynthetic microorganisms. This first application of transcriptomics to a Microcystis species has revealed that more than 25% of the genes displayed significant changes in their transcript abundance during the light/dark cycle and in particular during the dark/light transition. The metabolism of M. aeruginosa is compartmentalized between the light period, during which carbon uptake, photosynthesis and the reductive pentose phosphate pathway lead to the synthesis of glycogen, and the dark period, during which glycogen degradation, the oxidative pentose phosphate pathway, the TCA branched pathway and ammonium uptake promote amino acid biosynthesis. We also show that the biosynthesis of secondary metabolites, such as microcystins, aeruginosin and cyanopeptolin, occur essentially during the light period, suggesting that these metabolites may interact with the diurnal part of the central metabolism

    Biodiversity conservation: history, protected areas and hotspots

    Get PDF
    Angola is a large country of great physiographic, climatic and habitat diversity, with a corresponding richness in animal and plant species. Legally protected areas (National Parks and Game Reserves) were established from the 1930s and occupied 6% of the country’s terrestrial area at the time of independence in 1975. As a consequence of an extended war, the Protected Areas were exposed to serious neglect, poaching and land invasions. Many habitats of biogeographic importance, and many rare and endemic species came under threat. The recently strengthened administration gives cause for optimism that a new era for biodiversity conservation is at hand. The Protected Areas system was greatly expanded in 2011, and increasing resources are being made available towards achieving management effectivenessinfo:eu-repo/semantics/publishedVersio

    Therapeutic efficacy of TBC3711 in monocrotaline-induced pulmonary hypertension

    Get PDF
    Background: Endothelin-1 signalling plays an important role in pathogenesis of pulmonary hypertension. Although different endothelin-A receptor antagonists are developed, a novel therapeutic option to cure the disease is still needed. This study aims to investigate the therapeutic efficacy of the selective endothelin-A receptor antagonist TBC3711 in monocrotaline-induced pulmonary hypertension in rats. Methods: Monocrotaline-injected male Sprague-Dawley rats were randomized and treated orally from day 21 to 35 either with TBC3711 (Dose: 30 mg/kg body weight/day) or placebo. Echocardiographic measurements of different hemodynamic and right-heart hypertrophy parameters were performed. After day 35, rats were sacrificed for invasive hemodynamic and right-heart hypertrophy measurements. Additionally, histologic assessment of pulmonary vascular and right-heart remodelling was performed. Results: The novel endothelin-A receptor antagonist TBC3711 significantly attenuated monocrotaline-induced pulmonary hypertension, as evident from improved hemodynamics and right-heart hypertrophy in comparison with placebo group. In addition, muscularization and medial wall thickness of distal pulmonary vessels were ameliorated. The histologic evaluation of the right ventricle showed a significant reduction in fibrosis and cardiomyocyte size, suggesting an improvement in right-heart remodelling. Conclusion: The results of this study suggest that the selective endothelin-A receptor antagonist TBC3711 demonstrates therapeutic benefit in rats with established pulmonary hypertension, thus representing a useful therapeutic approach for treatment of pulmonary hypertension

    Clinical practice: Swallowing problems in cerebral palsy

    Get PDF
    Cerebral palsy (CP) is the most common physical disability in early childhood. The worldwide prevalence of CP is approximately 2–2.5 per 1,000 live births. It has been clinically defined as a group of motor, cognitive, and perceptive impairments secondary to a non-progressive defect or lesion of the developing brain. Children with CP can have swallowing problems with severe drooling as one of the consequences. Malnutrition and recurrent aspiration pneumonia can increase the risk of morbidity and mortality. Early attention should be given to dysphagia and excessive drooling and their substantial contribution to the burden of a child with CP and his/her family. This review displays the important functional and anatomical issues related to swallowing problems in children with CP based on relevant literature and expert opinion. Furthermore, based on our experience, we describe a plan for approach of investigation and treatment of swallowing problems in cerebral palsy
    corecore