45 research outputs found

    Fast readout algorithm for cylindrical beam position monitors providing good accuracy for particle bunches with large offsets

    Full text link
    A simple, analytically correct algorithm is developed for calculating pencil beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then used to study the impact of beam-size upon the precision of BPMs in the non-linear region. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized. Finally,the algorithm is tested with BPM data from the Cornell Preinjector.Comment: 21 pages, 17 figure

    Targeted ToF-SIMS Analysis of Macrophage Content from a Human Cranial Triphasic Calcium Phosphate Implant

    Get PDF
    Macrophages play a key role in determining the fate of implanted biomaterials, especially for biomaterials such as calcium phosphates (CaPs) where these cells play a vital role in material resorption and osteogenesis, as shown in different models, including clinical samples. Although substantial consideration is given to the design and validation of different CaPs, relatively little is known about their material-cell interaction. Specifically, the intracellular content of different CaP phases remains to be assessed, even though CaP-filled macrophages have been observed in several studies. In this study, 2D/3D ToF-SIMS imaging and multivariate analysis were directly applied on the histology samples of an explant to reveal the content of macrophages. The cellular content of the macrophages was analyzed to distinguish three CaP phases, monetite, beta-tricalcium phosphate, and pyrophosphate, which are all part of the monetite-based CaP implant composition under study. ToF-SIMS combined with histology revealed that the content of the identified macrophages was most similar to that of the pyrophosphate phase. This study is the first to uncover distinct CaP phases in macrophages from a human multiphasic CaP explant by targeted direct cell content analysis. The uncovering of pyrophosphate as the main phase found inside the macrophages is of great importance to understand the impact of the selected material in the process of biomaterial-instructed osteogenesis

    A surprisingly poor correlation between in vitro and in vivo testing of biomaterials for bone regeneration: results of a multicentre analysis.

    Get PDF
    New regenerative materials and approaches need to be assessed through reliable and comparable methods for rapid translation to the clinic. There is a considerable need for proven in vitro assays that are able to reduce the burden on animal testing, by allowing assessment of biomaterial utility predictive of the results currently obtained through in vivo studies. The purpose of this multicentre review was to investigate the correlation between existing in vitro results with in vivo outcomes observed for a range of biomaterials. Members from the European consortium BioDesign, comprising 8 universities in a European multicentre study, provided data from 36 in vivo studies and 47 in vitro assays testing 93 different biomaterials. The outcomes of the in vitro and in vivo experiments were scored according to commonly recognised measures of success relevant to each experiment. The correlation of in vitro with in vivo scores for each assay alone and in combination was assessed. A surprisingly poor correlation between in vitro and in vivo assessments of biomaterials was revealed indicating a clear need for further development of relevant in vitro assays. There was no significant overall correlation between in vitro and in vivo outcome. The mean in vitro scores revealed a trend of covariance to in vivo score with 58 %. The inadequacies of the current in vitro assessments highlighted here further stress the need for the development of novel approaches to in vitro biomaterial testing and validated pre-clinical pipelines

    A wire scanner system for characterizing the BNL energy recovery LINAC beam position monitor system A WIRE SCANNER SYSTEM FOR CHARACTERIZING THE BNL ENERGY RECOVERY LINAC BEAM POSITION MONITOR SYSTEM *

    No full text
    Abstract A stepper motor controlled wire scanner system has recently been modified to support testing of the Brookhaven National Laboratory (BNL) ColliderAccelerator department's Energy Recovery Linac (ERL) beam position monitor (BPM) system. The ERL BPM consists of four 9.33 mm diameter buttons mounted at 90 degree spacing in a cube with 1.875 inch inside diameter. The buttons were designed by BNL and fabricated by Times Microwave Systems. Libera brilliance single pass BPM electronic modules with 700 MHz bandpass filter, manufactured by Instrumentation Technologies, will be used to measure the transverse beam positions at 14 locations around the ERL [1]. The wire scanner assembly provides the ability to measure the BPM button response to a pulsed wire, and evaluate and calibrate the Libera position measurement electronics. A description of the wire scanner system and test result data will be presented
    corecore