9,309 research outputs found

    New Gauged N=8, D=4 Supergravities

    Full text link
    New gaugings of four dimensional N=8 supergravity are constructed, including one which has a Minkowski space vacuum that preserves N=2 supersymmetry and in which the gauge group is broken to SU(3)xU(1)2SU(3)xU(1)^2. Previous gaugings used the form of the ungauged action which is invariant under a rigid SL(8,R)SL(8,R) symmetry and promoted a 28-dimensional subgroup (SO(8),SO(p,8−p)SO(8),SO(p,8-p) or the non-semi-simple contraction CSO(p,q,8−p−q)CSO(p,q,8-p-q)) to a local gauge group. Here, a dual form of the ungauged action is used which is invariant under SU∗(8)SU^*(8) instead of SL(8,R)SL(8,R) and new theories are obtained by gauging 28-dimensional subgroups of SU∗(8)SU^*(8). The gauge groups are non-semi-simple and are different real forms of the CSO(2p,8−2p)CSO(2p,8-2p) groups, denoted CSO∗(2p,8−2p)CSO^*(2p,8-2p), and the new theories have a rigid SU(2) symmetry. The five dimensional gauged N=8 supergravities are dimensionally reduced to D=4. The D=5,SO(p,6−p)D=5,SO(p,6-p) gauge theories reduce, after a duality transformation, to the D=4,CSO(p,6−p,2)D=4,CSO(p,6-p,2) gauging while the SO∗(6)SO^*(6) gauge theory reduces to the D=4,CSO∗(6,2)D=4, CSO^*(6,2) gauge theory. The new theories are related to the old ones via an analytic continuation. The non-semi-simple gaugings can be dualised to forms with different gauge groups.Comment: 33 pages. Reference adde

    Timelike Hopf Duality and Type IIA^* String Solutions

    Get PDF
    The usual T-duality that relates the type IIA and IIB theories compactified on circles of inversely-related radii does not operate if the dimensional reduction is performed on the time direction rather than a spatial one. This observation led to the recent proposal that there might exist two further ten-dimensional theories, namely type IIA^* and type IIB^*, related to type IIB and type IIA respectively by a timelike dimensional reduction. In this paper we explore such dimensional reductions in cases where time is the coordinate of a non-trivial U(1) fibre bundle. We focus in particular on situations where there is an odd-dimensional anti-de Sitter spacetime AdS_{2n+1}, which can be described as a U(1) bundle over \widetilde{CP}^n, a non-compact version of CP^n corresponding to the coset manifold SU(n,1)/U(n). In particular, we study the AdS_5\times S^5 and AdS_7\times S^4 solutions of type IIB supergravity and eleven-dimensional supergravity. Applying a timelike Hopf T-duality transformation to the former provides a new solution of the type IIA^* theory, of the form \widetilde{CP}^2\times S^1\times S^5. We show how the Hopf-reduced solutions provide further examples of ``supersymmetry without supersymmetry.'' We also present a detailed discussion of the geometrical structure of the Hopf-fibred metric on AdS_{2n+1}, and its relation to the horospherical metric that arises in the AdS/CFT correspondence.Comment: Latex, 26 page

    Superstrings on AdS3 at k=1

    Full text link
    We study superstring theory in three dimensional Anti-de Sitter spacetime with NS-NS flux, focusing on the case where the radius of curvature is equal to the string length. This corresponds to the critical level k=1 in the Wess-Zumino-Witten description. Previously, it was argued that a transition takes place at this special radius, from a phase dominated by black holes at larger radius to one dominated by long strings at smaller radius. We argue that the infinite tower of modes that become massless at k=1 is a signal of this transition. We propose a simple two-dimensional conformal field theory as the holographic dual to superstring theory at k=1. As evidence for our conjecture, we demonstrate that at large N our putative dual exactly reproduces the full spectrum of the long strings of the weakly coupled string theory, including states unprotected by supersymmetry.Comment: 29 pages, one figure. An equivalent construction of the dual orbifold CFT has been added, together with a discussion of the short string spectrum and additional observations on interaction

    Duality Twists on a Group Manifold

    Get PDF
    We study duality-twisted dimensional reductions on a group manifold G, where the twist is in a group \tilde{G} and examine the conditions for consistency. We find that if the duality twist is introduced through a group element \tilde{g} in \tilde{G}, then the flat \tilde{G}-connection A =\tilde{g}^{-1} d\tilde{g} must have constant components M_n with respect to the basis 1-forms on G, so that the dependence on the internal coordinates cancels out in the lower dimensional theory. This condition can be satisfied if and only if M_n forms a representation of the Lie algebra of G, which then ensures that the lower dimensional gauge algebra closes. We find the form of this gauge algebra and compare it to that arising from flux compactifications on twisted tori. As an example of our construction, we find a new five dimensional gauged, massive supergravity theory by dimensionally reducing the eight dimensional Type II supergravity on a three dimensional unimodular, non-semi-simple, non-abelian group manifold with an SL(3,R) twist.Comment: 22 page

    Generalised Geometry for M-Theory

    Get PDF
    Generalised geometry studies structures on a d-dimensional manifold with a metric and 2-form gauge field on which there is a natural action of the group SO(d,d). This is generalised to d-dimensional manifolds with a metric and 3-form gauge field on which there is a natural action of the group EdE_{d}. This provides a framework for the discussion of M-theory solutions with flux. A different generalisation is to d-dimensional manifolds with a metric, 2-form gauge field and a set of p-forms for pp either odd or even on which there is a natural action of the group Ed+1E_{d+1}. This is useful for type IIA or IIB string solutions with flux. Further generalisations give extended tangent bundles and extended spin bundles relevant for non-geometric backgrounds. Special structures that arise for supersymmetric backgrounds are discussed.Comment: 31 page

    A Geometry for Non-Geometric String Backgrounds

    Full text link
    A geometric string solution has background fields in overlapping coordinate patches related by diffeomorphisms and gauge transformations, while for a non-geometric background this is generalised to allow transition functions involving duality transformations. Non-geometric string backgrounds arise from T-duals and mirrors of flux compactifications, from reductions with duality twists and from asymmetric orbifolds. Strings in ` T-fold' backgrounds with a local nn-torus fibration and T-duality transition functions in O(n,n;Z)O(n,n;\Z) are formulated in an enlarged space with a T2nT^{2n} fibration which is geometric, with spacetime emerging locally from a choice of a TnT^n submanifold of each T2nT^{2n} fibre, so that it is a subspace or brane embedded in the enlarged space. T-duality acts by changing to a different TnT^n subspace of T2nT^{2n}. For a geometric background, the local choices of TnT^n fit together to give a spacetime which is a TnT^n bundle, while for non-geometric string backgrounds they do not fit together to form a manifold. In such cases spacetime geometry only makes sense locally, and the global structure involves the doubled geometry. For open strings, generalised D-branes wrap a TnT^n subspace of each T2nT^{2n} fibre and the physical D-brane is the part of the part of the physical space lying in the generalised D-brane subspace.Comment: 28 Pages. Minor change

    The many faces of OSp(1|32)

    Get PDF
    We show that the complete superalgebra of symmetries, including central charges, that underlies F-theories, M-theories and type II string theories in dimensions 12, 11 and 10 of various signatures correspond to rewriting of the same OSp(1|32) algebra in different covariant ways. One only has to distinguish the complex and the unique real algebra. We develop a common framework to discuss all signatures theories by starting from the complex form of OSp(1|32). Theories are distinguished by the choice of basis for this algebra. We formulate dimensional reductions and dualities as changes of basis of the algebra. A second ingredient is the choice of a real form corresponding to a specific signature. The existence of the real form of the algebra selects preferred spacetime signatures. In particular, we show how the real d=10 IIA and IIB superalgebras for various signatures are related by generalized T-duality transformations that not only involve spacelike but also timelike directions. A third essential ingredient is that the translation generator in one theory plays the role of a central charge operator in the other theory. The identification of the translation generator in these algebras leads to the star algebras of Hull, which are characterized by the fact that the positive definite energy operator is not part of the translation generators. We apply our results to discuss different T-dual pictures of the D-instanton solution of Euclidean IIB supergravity.Comment: 30 pages, Latex, using lscape.st

    Spacetime-Filling Branes and Strings with Sixteen Supercharges

    Get PDF
    We discuss branes whose worldvolume dimension equals the target spacetime dimension, i.e. ``spacetime-filling branes''. In addition to the D9-branes, there are 9-branes in the NS-NS sectors of both the IIA and IIB strings. The worldvolume actions of these branes are constructed, via duality, from the known actions of branes with codimension larger than zero. Each of these types of branes is used in the construction of a string theory with sixteen supercharges by modding out a type II string by an appropriate discrete symmetry and adding 32 9-branes. These constructions are related by a web of dualities and each arises as a different limit of the Horava-Witten construction.Comment: 43 pages, LaTeX, 8 figures, uses html.sty, version to appear in Nucl. Phys.

    Compactifications with S-Duality Twists

    Full text link
    We consider generalised Scherk Schwarz reductions of supergravity and superstring theories with twists by electromagnetic dualities that are symmetries of the equations of motion but not of the action, such as the S-duality of D=4, N=4 super-Yang-Mills coupled to supergravity. The reduction cannot be done on the action itself, but must be done either on the field equations or on a duality invariant form of the action, such as one in the doubled formalism in which potentials are introduced for both electric and magnetic fields. The resulting theory in odd-dimensions has massive form fields satisfying a self-duality condition dA∌m∗AdA \sim m*A. We construct such theories in D=3,5,7.Comment: Latex, 26 pages. References adde
    • 

    corecore