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The many faces of OSp(1|32)
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Abstract. We show that the complete superalgebra of symmetries, including central charges, that
underlies F-theories, M-theories and type II string theories in dimensions 12, 11 and 10 of various
signatures correspond to rewriting the same OSp(1|32) algebra in different covariant ways. One
only has to distinguish the complex and the unique real algebra. We develop a common framework
to discuss all signature theories by starting from the complex form of OSp(1|32). Theories are
distinguished by the choice of basis for this algebra. We formulate dimensional reductions and
dualities as changes of basis of the algebra. A second ingredient is the choice of a real form
corresponding to a specific signature. The existence of the real form of the algebra selects preferred
spacetime signatures. In particular, we show how the real d = 10 IIA and IIB superalgebras
for various signatures are related by generalized T-duality transformations that not only involve
spacelike but also timelike directions. A third essential ingredient is that the translation generator
in one theory plays the role of a central charge operator in the other theory. The identification of the
translation generator in these algebras leads to the star algebras of Hull, which are characterized
by the fact that the positive-definite energy operator is not part of the translation generators. We
apply our results to discuss different T-dual pictures of the D-instanton solution of Euclidean IIB
supergravity.

PACS numbers: 0365F, 0465, 1125

1. Introduction

In some recent applications of string theory an important role has been played by the D-
instanton, as introduced in [1, 2]. The brane solution corresponding to such a D-instanton
was considered in [3]. There, the instanton was presented as a brane solution with transverse
directions only of a 10-dimensional Euclidean theory containing the metric, the dilaton and the
Ramond–Ramond scalar. It was suggested that this was part of a Euclidean IIB supergravity
theory in 10 dimensions. At first sight, the definition of such a Euclidean IIB supergravity
theory seems problematic, since one cannot extend the self-duality constraint of the real
IIB Ramond–Ramond 5-form field strength from a Minkowski spacetime to a spacetime of
signature (10, 0)‖. This paper addresses the issue of in what sense the D-instanton can be
represented as a brane solution of a Euclidean supersymmetric theory.

Euclidean supersymmetric theories have been considered in lower dimensions [4–6]. In
some cases, the Euclidean theory could be obtained only by complexifying the fields, and
considering holomorphic actions. This procedure also seems appropriate for the IIB Euclidean

§ Onderzoeksdirecteur FWO, Belgium.
‖ See the imaginary factor in (A.2) for d = 10, t = 0.
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3278 E Bergshoeff and A Van Proeyen

theory mentioned above, as the self-duality of the 5-form can be maintained for complex fields
only†.

The D-instanton is a solution of the Euclidean action [3]

SE =
∫

d10x
√
g

[
R − 1

2 (∂φ)
2 + 1

2 e2φ(∂�)2
]
, (1.1)

where φ is the dilaton and � is the Ramond–Ramond scalar. In the solution, the metric is flat,
gµν = δµν , and

±� = e−φ = H−1, (1.2)

where H is a general harmonic function over the 10-dimensional flat Euclidean space. If
we want to connect the D-instanton with other branes by T-duality, we have to reduce it to
a spacetime of signature (9, 0), thus yielding a D-instanton in nine Euclidean dimensions.
The only standard D-brane that also gives rise, upon reduction, to a D-instanton in nine
Euclidean dimensions is the D0-brane of the type IIA string. This D0-brane is a solution
of the Minkowskian action

SM =
∫

d10x
√−g [−R − 1

2 (∂φ)
2 − 1

4 e3φ/2FµνF
µν

]
, (1.3)

given by

ds2 = −H−7/8 dt2 + H 1/8 dx2
(9),

eφ = H 3/4, At = ±H−1,
(1.4)

where H is a harmonic function over the nine-dimensional Euclidean transverse space. The
D-instanton and the D0-brane are mapped onto each other under the type II T-duality rules [7]
adapted to the Euclidean case for the D-instanton, as follows (we use the Einstein frame) [8]:

IIB, (10, 0) ↔ IIA, (9, 1)

gµν ↔ eφ/8gµν(−gtt)
1/4,

gxx ↔ e−7φ/8(−gtt)
−3/4,

� ↔ At,

eφ ↔ e3φ/4(−gtt)
−1/2,

(1.5)

where x in the IIB case and t in the IIA case are the directions in which the duality is performed,
and µ, ν are the remaining directions.

To obtain the above duality transformation, we had to compactify one theory over a
spacelike direction and the other over a timelike direction‡. This has to be contrasted with
the usual duality transformations, where both theories are compactified over a spacelike
direction. To distinguish these dualities, we will refer to the usual type of duality as a
space/space duality, and the above one as a space/time duality. The special feature of a
space/time duality is that it connects theories with different signatures of spacetime. 10- and
11-dimensional theories with various signatures, connected by different space/time dualities
have been studied in [12]. For further work on these theories, see [13]. The purpose of
this paper is to reconsider the results of [12] from a superalgebra point of view§. All the

† We thank Peter van Nieuwenhuizen for a discussion on this point.
‡ The case in which both theories are compactified over a timelike direction has been studied in [9, 10]. Relations
between Euclidean and Minkowski supersymmetry by reducing over a different number of space versus time directions
played an important role in [11].
§ Some remarks on the underlying (complex) algebraic structure were already made in [12].
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theories that we consider have 32 supersymmetries†. Including all the central charges, the
superalgebra must then be (a contraction of) OSp(1|32), which is the unique maximal simple
superalgebra with 32 fermionic generators, already mentioned in [17] as the natural candidate
for a geometrical interpretation of 11-dimensional supergravity. We will show in what sense
all the theories occurring in [12] are indeed related by this common algebraic structure.
In the OSp(1|32) algebra, the bosonic generators that occur on the right-hand side of the
{Q,Q} anticommutator have non-trivial commutation relations, both between themselves
and with the supersymmetry generators. In the Poincaré theories which we consider, the
algebra is, in fact, the contraction of the OSp(1|32) algebra such that all of these commutators
vanish. One might also consider anti-de Sitter-type theories where the uncontractedOSp(1|32)
algebra exists. The connection to anti-de Sitter has been made in [18], by identifying the 2-
index generator on the right-hand side of {Q,Q} with the Lorentz generator Mµν , such that
[Pµ, Pν] = Mµν .

The maximal dimension in which the generators of OSp(1|32) can be considered as
representations of a Lorentz algebra is 12. In the decomposition of the generators of
OSp(1|32) into representations of the 12-dimensional Lorentz algebra there is no vector,
i.e. there is no room for translations. Translations are essential to define a spacetime, and
thus a supersymmetric action. Only after reduction to 11 dimensions do translations appear
in the algebra, and we can start to consider actions. We will see that in various methods
of reduction (first over spacelike or timelike directions), the translations get identified with
different generators of the 11-dimensional algebra. To identify the symmetry algebras of
the different theories occurring in [12], generators that play the role of translations in one
theory, become central charges in others. The appearance of different twisted algebras in [12]
can be understood from this point of view, and leads in our approach to identical complete
superalgebras once the central charges have been included.

As mentioned above, sometimes it is necessary to work with complex fields. This reflects
itself in the necessity to use the complex form of OSp(1|32). Only for certain signatures can
one use the real form of the algebra and work with real fields in the corresponding supergravity
theory. We remind the reader that the complex form of an algebra with generators TA means
that the algebra vector space consists of all elements εATA with εA complex numbers. The
real form is a subspace of this vector space defined by a reality condition on all the εA, e.g.
that they are all real. In general, a complex form of a (super-)algebra can have different real
forms. Consider for instance the three generators of SU(2) with commutation relations

[Ti, Tj ] = εijkTk. (1.6)

The real form defined by aiTi with all ai real is the real form ofSU(2), while ib1T1+ib2T2+b3T3

with all bi real defines SU(1, 1). Conveniently rewriting the above expression as biSi , such
that the factors of i disappear, the commutation relations are

[S1, S2] = −S3, [S2, S3] = S1, [S3, S1] = S2, (1.7)

showing a sign difference in the commutation relations. Note that this sign is not relevant in
the complex form, as biSi with all bi complex is the same complex algebra as that mentioned
in the T -basis.

An important property is that OSp(1|32) has only one real form. This can be seen
by looking at the list of real forms of superalgebras established in [19] and conveniently
summarized in a table in [20, 21]. In order that this real form can be used for a particular

† For earlier work on superalgebras with 32 supersymmetries, see [14]. Superalgebras with more than 32
supersymmetries, containing both IIA and IIB algebras, have been considered in, for example, [15, 16].



3280 E Bergshoeff and A Van Proeyen

dimension and signature, the parameters should form a real 32-dimensional representation of
the corresponding Lorentz algebra. We can thus determine the relevant cases by considering for
which signatures the smallest spinor has a real dimension of at most 32. Spinors for arbitrary
spacetime signatures have been studied in [22] and for a convenient table, one can consider
table 2 in [21]. This shows that the highest dimension is again 12, but only for signatures
(10, 2), (6, 6) or (2, 10). In 11 dimensions the allowed signatures are (10, 1), (9, 2), (6, 5)
or the s ↔ t interchanged ones (which are equivalent using redefinitions). In 10 dimensions
and lower, all signatures are possible, sometimes with irreducible spinors and otherwise as
type II theories (see table 1 in section 3). The complex form of the algebra is independent of
the signature of spacetime. Indeed, the complex form of the Lorentz algebra for any signature
is the same, similar as we saw above in that the complex form of SU(2) is the same as that of
SU(1, 1).

We will show that manipulations such as reductions and dualities can be understood as
different reparametrizations of the same OSp(1|32) algebra, in its complex or real form. Thus
all different possibilities of M-type or type II theories can be viewed as different faces of the
same OSp(1|32) superalgebra, hence explaining the title of this paper.

In section 2, we will consider the complex form of OSp(1|32), written as a symmetry
algebra in 10, 11 and 12 dimensions. It is convenient to start with the complex form, as
this is independent of the signature. We will discuss the formulation of the algebras in
these dimensions, their dimensional reductions and the (complex) T-dualities relating them.
Section 3 considers the restriction of these complex algebras to real algebras, for which
the signature becomes important. In parallel to the previous section we will first discuss
the formulation of the real algebras in the different dimensions and next their dimensional
reductions and the (real) T-dualities relating them. The final result is summarized in table 2. In
section 4 we discuss the relation between the superalgebra and the corresponding supergravity
action. In particular, we will identify the translations between the bosonic charges, and show
that different choices of the translation generator (interchanging it with central charges) lead
to the different $-algebras of [12]. The different theories thus obtained are summarized in
table 3 which is similar to that given in [12]. Finally, in the conclusions we will come back to
the issue of the D-instanton and its T-dual formulations, as discussed in the beginning of this
introduction.

2. Complex symmetry algebras

2.1. Algebras in 12 to 10 dimensions

We consider algebras with 32 supersymmetries, not taking into account their reality properties.
This implies that d = 12 is the highest dimension. In this subsection, we present the algebras
in 12 to 10 dimensions, leaving the relations between them to the next two subsections. We
start by writing the OSp(1|32) algebra in a 12-dimensional covariant way. This means that the
anticommutator of the supersymmetries is the most general expression in accordance with the
symmetries, i.e. it reflects the decomposition of the symmetric product of two 32-dimensional
spinor representations of Sp(32) in SO(12) representations†:

(32× 32)S = 66 + 462+. (2.1)

The 32 spinor components are a chiral spinor in 12 dimensions, i.e. %̂∗Q̂ = Q̂. For the notation
of spinors, gamma matrices and duals of tensors, we refer to appendix A. Note that for the

† In this section we discuss the complex algebras, and thus the notation SO(12) should be understood as the
corresponding algebra over the complex field.
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complex case, the signature of spacetime is not relevant. However, we have to choose a metric
for raising and lowering indices, etc. We will use the notation such that this metric is the
identity, which implies that we can use the general formula as if we are in the Euclidean case
t = 0. The anticommutator of two supersymmetries is†

{
Q̂, Q̂

} = 1
2 P̂+%̂M̂N̂ ẐM̂N̂ +

1

6!
P̂+%̂M̂1···M̂6Ẑ+

M̂1···M̂6
, (2.2)

where the gamma matrices are 64× 64 matrices, but due to the chiral projection operators P̂+,
their relevant part is 32× 32. The 6-index generator is self-dual, i.e.

Ẑ+
M̂1···M̂6

= ˜̂Z+
M̂1···M̂6

, (2.3)

as a consequence of the chirality condition of the spinors. We do not consider the commutation
relations between the bosonic generators. They are non-zero for OSp(1|32), but zero for
its contraction which, in d = 10 and 11, is the super-Poincaré algebra. These additional
commutation relations do not play a role in the subsequent discussions.

In 11 dimensions, the reduction of the adjoint representation of Sp(32) goes as

(32× 32)S = 11 + 55 + 462. (2.4)

The relevant spinors are in an irreducible spinor representation ofSO(11). The anticommutator
is

{Q,Q} = %̃M̃ Z̃M̃ + 1
2 %̃

M̃Ñ Z̃M̃Ñ +
1

5!
%̃M̃1···M̃5Z̃M̃1···M̃5

, (2.5)

where the gamma matrices are 32× 32. Their relation with the 12-dimensional ones is given
in appendix B.

In 10 dimensions the smallest irreducible spinors are the 16-dimensional chiral spinors.
The 32 fermionic generators can be contained in two chiral spinors of opposite chirality (IIA)
or of the same chirality (IIB). The 528 bosonic generators will be represented, respectively, as

IIA: 1 + 10 + 10 + 45 + 210 + 126+ + 126−,

IIB: 10 + 10 + 10 + 120 + 126+ + 126+ + 126+.
(2.6)

For the IIA theory, the spinors satisfy Q± = ±%∗Q±. The IIA anticommutators are

{
Q±,Q±

} = P±%MZ±M +
1

5!
P±%M1···M5Z±M1···M5

,

{
Q±,Q∓

} = ±P±Z + 1
2P±%MNZMN ± 1

4!
P±%M1···M4ZM1···M4 .

(2.7)

In this case Z±M1···M5
is (anti-)self-dual. For later purposes, we note that this algebra has the Z2

automorphism which is denoted as (−)FL , acting as

Q±
(−)FL−→ ±Q±,

(
Z,ZMN,ZMNPQ

) (−)FL−→ − (
Z,ZMN,ZMNPQ

)
,

(2.8)

the other bosonic generators remaining invariant.

† Observe the omission of the charge conjugation matrix in our notation, see (A.8).
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For the IIB theory we introduce a doublet of left-handed supersymmetries: Qi = %∗Qi

with i = 1, 2, and the anticommutators are

{
Qi,Qj

} = P+%MY
ij

M +
1

3!
P+%MNP εijYMNP + P+ 1

5!
%M1···M5Y

+ ij

M1···M5
, (2.9)

where Y ij

M and Y
ij

M1···M5
are the most general symmetric matrices in (ij), which can be expanded

in the 2× 2 Pauli matrices as follows:

Y
ij

M = δijY
(0)
M + τ

ij

1 Y
(1)
M + τ

ij

3 Y
(3)
M ,

Y
+ ij

M1···M5
= (

δijY
+(0)
M1···M5

+ τ
ij

1 Y
+(1)
M1···M5

+ τ
ij

3 Y
+(3)
M1···M5

)
.

(2.10)

This IIB algebra has Z2 automorphisms, i.e. Qi → Mi
jQ

j , where M is a matrix that squares
to 1l. In particular, the cases M = τ3 and M = τ1 are usually denoted by (−)FL and *, which
act as

Qi (−)FL−→ (τ3)
i
jQ

j ,(
Y

(1)
M , YMNP , Y

+(1)
M1···M5

) (−)FL−→ −(
Y

(1)
M , YMNP , Y

+(1)
M1···M5

)
,

(2.11)

Qi *−→ (τ1)
i
jQ

j ,(
Y

(3)
M , YMNP , Y

+(3)
M1···M5

) *−→ −(
Y

(3)
M , YMNP , Y

+(3)
M1···M5

)
.

(2.12)

Finally, there is also the S duality map

Qi S−→ (
e

1
4 iπτ2

)
i
jQ

j ,

(
Y

(1)
M , Y

(1)
M1···M5

) S−→ (
Y

(3)
M , Y

(3)
M1···M5

)
, (2.13)

(
Y

(3)
M , Y

(3)
M1···M5

) S−→ −(
Y

(1)
M , Y

(1)
M1···M5

)
,

which has S8 = 1.

2.2. Dimensional reduction

The algebras of the previous subsection can be related by dimensional reduction, except for
the IIB algebra which is related to the IIA by T-duality, to be discussed in the next subsection.
The explicit formulae that we will give below, depend on the representation of the Clifford
algebra. We refer to appendix B for our choice of representation.

The d = 12 chiral spinor, Q̂, is in this representation decomposed as

Q̂ =
(
Q+

Q−

)
. (2.14)

The chirality in 12 dimensions, with %̂∗ = %∗ ⊗ σ3, implies that the two components satisfy
Q± = ±%∗Q±. These components are the supersymmetry generators of the IIA algebra in 10
dimensions. The 11-dimensional spinor Q is obtained as the sum of Q+ and Q−:

Q = Q+ + Q−. (2.15)
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It is easiest to reduce first from 12 to 10 dimensions. Then the IIA algebra is obtained with

Z±M = iẐM 12 ∓ ẐM 11,

ZM1···M5 = 2iẐM1···M5 12,

Z = iẐ11 12, (2.16)

ZMN = ẐMN,

ZM1···M4 = 2iẐM1···M4 11 12.

After combining the anticommutators of Q± to obtain the anticommutation relations for Q as
defined in (2.15), we obtain the following reduction rules from 12 to 11 dimensions:

Z̃M̃ = iẐM̃ 12,

Z̃M̃Ñ = ẐM̃Ñ , (2.17)

Z̃M̃1···M̃5
= 2iẐM̃1···M̃5 12.

2.3. T-duality

The connection between the IIA and IIB algebras is obtained by T-duality in a particular
direction. Since we work with the complex form of the algebras as if we are in the Euclidean
case, we denote this direction by s (spacelike). We make the following identifications between
the supersymmetry generators:

Q+ = Q1, Q− = %sQ2. (2.18)

Splitting the 10-dimensional index M in (µ, s), with µ = 1, . . . , 9, this leads to the following
identifications between the bosonic generators:

Z±µ = Y (0)
µ ± Y (3)

µ ,

Z±s = ±Y (0)
s + Y (3)

s ,

Z±µ1···µ5
= Y +(0)

µ1···µ5
± Y +(3)

µ1···µ5
,

Z = −Y (1)
s ,

Zµν = −Yµν s,

Zµ s = −Y (1)
µ ,

Zµ1···µ4 = −2Y +(1)
µ1···µ4 s

,

Zµνρ s = −Yµνρ.

(2.19)

For later purposes, to compare with the real case discussed in subsection 3.3, we explain
how to derive the first two lines of (2.19). We start by writing out the relevant terms of the IIA
algebra and split the index M into (µ, s):

{Q±,Q±} = P±%µZ±µ + P±%sZ±s + · · · . (2.20)

We next substitute the identifications (2.18) into the left-hand side of this equation. We thus
obtain

{Q1,Q1} = P+%µZ+
µ + P+%sZ+

s + · · · ,
%s{Q2,Q2}(%s)T = P−%µZ−µ + P−%sZ−s + · · · .

(2.21)
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In the second line we bring the %s matrices over to the right-hand side by using the identity
(%s)2 = 1. Using some simple gamma matrix identities like C−1(%s)T = −%sC−1 (note
again the omitted C−1 in our notation for the anticommutation relations) and %s%µ%s = −%µ,
one finds that the above algebra coincides with the relevant terms in the IIB algebra provided
the identifications are made given in the first two lines of (2.19).

3. Real symmetry algebras

Up to now, we did not consider the Hermiticity properties of the generators. For the real forms of
the algebras, we can impose Hermiticity conditions on the realizations of the generators. For the
fermionic generators, Hermiticity conditions are the Majorana conditions, whose consistency
depends on the signature of spacetime as mentioned in the introduction and discussed in
appendix A. The situation is summarized in table 1.

Table 1. The table summarizes the possible reality conditions for spinors in dimensions d =
10, 11, 12 for different signatures (s, t) in which the minimal spinor is at most 32 dimensional.
M denotes Majorana spinors, SM is a shorthand for symplectic Majorana spinors (given our
convention for charge conjugation, otherwise this is equivalent to M), MW indicates the possibility
of Majorana–Weyl spinors, while SMW indicates the possibility of symplectic Majorana–Weyl
spinors. We only give the signatures with s � t , as those with s < t are equivalent up to
interchange of s with t . The last row indicates, for each signature, whether in d = 10 a real form
for type IIA (A), type IIB (B) or both (A/B) exists.

d (s, t)

12 (10, 2) (6, 6)
MW MW

11 (10, 1) (9, 2) (6, 5)
M M M

10 (10, 0) (9, 1) (8, 2) (7, 3) (6, 4) (5, 5)
SM MW M SMW SM MW
A A/B A B A A/B

3.1. Algebras in dimensions 12 to 10

To consider the Hermiticity properties of the generators, it is convenient to replace complex
conjugation by the operation of charge conjugation†. This operator is chosen such that
Majorana spinors λ satisfy λC = λ. For more details, see appendix A. The definition of the C

operation involves an arbitrary phase factor α (or a matrix, see (A.9)) which may depend on the
spacetime dimension and signature. This phase factor is equivalent to a possible redefinition of
all spinors by α1/2. For bosonic generators, the C operation is Hermitian conjugation together
with multiplication with a factor of α−2β (see (A.13)). The parameter β is a sign that depends
on the convention of whether one maintains (β = 1) or interchanges (β = −1) the order of
fermions. Finally, for %-matrices the important properties are

%C
a = (−)t+1%a, %C

∗ = (−)d/2+t%∗, (3.1)

where a denotes a Lorentz index in an arbitrary dimension.

† As can be seen from appendix A, the charge conjugation operation on spinors squares to one in the signatures
that appear in table 1, except for (10, 0), (7, 3) and (6, 4). For (10, 0) and (6, 4) one could define another charge
conjugation matrix, multiplying the one we defined in appendix A by %∗, such that the operation with respect to the
newly defined charge conjugation matrix also squares to one. The charge conjugation matrix which we use in this
paper leads in the latter signatures to a symplectic Majorana condition as discussed in the text.
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To connect gamma matrices in different spacetime signatures, we use for gamma matrices
in timelike directions

%a = −i
0
%a, (3.2)

where
0
% denotes the gamma matrix in Euclidean space, which was used in the complex form

of the algebras. We will not change the form of the commutators of the previous section, by
redefining simultaneously the generators, e.g.

0
%13

0
Z13 = %13Z13 with Z13 = i

0
Z13, (3.3)

with 1 being a timelike direction and 3 a spacelike direction.
Considering the consistency of the anticommutators of the previous section with the charge

conjugation, we find for d = 12

d = 12: Ẑ = Ẑ⊗ (3.4)

for all generators. Here we have introduced a ⊗-operation for the bosonic generators that
basically is a complex conjugation that hides prefactors involvingα andβ (see equation (A.13)).
For d = 12 the ⊗-operation involves a factor α−2

10,2β or α−2
6,6β. The factor α is in this case a

number with modulus one, that can be chosen for each spacetime signature.
Similarly, for d = 11 and t = 1 we find the reality conditions

d = 11, t = 1, 5: Z̃ = Z̃⊗, (3.5)

for all bosonic generators Z̃ with one, two or five indices. For two time directions in d = 11,
other signs occur:

d = 11, t = 2:

Z̃M̃ = −Z̃⊗M̃ ,

Z̃M̃Ñ = Z̃⊗
M̃Ñ

,

Z̃M̃1···M̃5
= −Z̃⊗

M̃1···M̃5
.

(3.6)

For 10 dimensions the discussion becomes more involved as there are different types of
spinors. Consider first the signatures (9, 1) and (5, 5), where they are Majorana–Weyl spinors

IIA, (9, 1) or (5, 5) : (Q+)C = Q+, (Q−)C = Q−,

IIB, (9, 1) or (5, 5) : (Qi)C = Qi.
(3.7)

This is possible because %∗ is invariant under C. We could have inserted arbitrary phase factors
in the right-hand sides of these equations. However, these amount to a redefinition of the phase
factor α in the definition of the charge conjugation of spinors. This is true for any Majorana
condition. For IIA we have two independent Majorana conditions, and correspondingly we
could have two independent phase factors hidden in the C operation. In other words, the matrix
α is in this case

α
(A)
9,1 =

(
α+

9,1 0
0 α−9,1

)
. (3.8)

For IIB the Majorana condition can mix the two chiral spinors, and α can thus be a matrix
αi

j , that has to satisfy (A.10). For clarity, we give below the explicit form of the IIB reality
condition given in the second line of (3.7):

(Qi)C ≡ (α−1)i j %tC
−1Qj∗ = Qi. (3.9)
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One obtains for all bosonic generators in the superalgebra the reality conditions

IIA, (9, 1) or (5, 5): Z = Z⊗,

IIB, (9, 1) or (5, 5): Y = Y⊗.
(3.10)

In the first equation it is understood that, in the case that one uses different phase factors α±

for the reality conditions on Q± the ⊗-operation reads(
Z±

)⊗ = β (α±)−2(Z±)∗,

Z⊗ = β (α+α−)−1Z∗,
(3.11)

where the second line is for the Ramond–Ramond operators. In the second equation of (3.10),
the implicit α factors now act as a matrix, thus

Y ij = Y⊗ ij = β(α−1)ik Y
∗ k� (α−1)j �, εijYMNP = β(α−1)ik ε

k�Y ∗MNP (α−1)j �. (3.12)

Next, we consider the signature (8, 2). The Majorana condition can only be imposed on
non-chiral spinors. Indeed, the C operation changes a chiral spinor to an antichiral one as
%C
∗ = −%∗. Therefore, we cannot impose Majorana conditions on chiral spinors, and thus

type IIB does not have a real form. For type IIA, the Majorana spinor is Q+ +Q−, or explicitly
we have

IIA, (8, 2): (Q+)C = Q−, (Q−)C = Q+. (3.13)

Considering here the consistency of the algebra with the C operation, we find

IIA, (8, 2): (Z+
M)⊗ = −Z−M, (Z+

M1···M5
)⊗ = −Z−M1···M5

,

Z⊗ = −Z, Z⊗MN = ZMN, Z⊗MNPQ = −ZMNPQ.
(3.14)

For the signatures (10, 0) and (6, 4) the discussion is similar to the (8, 2) case. Again, a real
form of type IIB does not exist. For type IIA there are only signs to be changed with respect to
the previous case. Indeed, as mentioned in the first footnote in section 1, by another definition
of charge conjugation the (10, 0) and (6, 4) cases could be made identical to the (8, 2) case.
However, we do not change our definition of the charge conjugation, which implies that now
the charge conjugation operator squares to −1. Therefore, a consistent Majorana condition
looks rather as a symplectic Majorana condition:

IIA, (10, 0) or (6, 4): (Q+)C = Q−, (Q−)C = −Q+. (3.15)

The consistency of the algebra with the C operation now gives other signs for the Ramond–
Ramond generators,

IIA, (10, 0) or (6, 4): (Z+
M)⊗ = −Z−M, (Z+

M1···M5
)⊗ = −Z−M1···M5

,

Z⊗ = Z, Z⊗MN = −ZMN,

Z⊗MNPQ = ZMNPQ.

(3.16)

The remaining case is (7, 3). Now, the charge conjugation leaves%∗ invariant, and squares
to−1. Therefore, in type IIA we cannot impose Majorana conditions, or, in other words, there
is no real form for IIA. For type IIB there is the symplectic Majorana–Weyl condition

IIB, (7, 3): (Qi)C = εijQ
j . (3.17)
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The reality conditions of the bosonic generators are

IIB, (7, 3): (Y
(0)
M )⊗ = Y

(0)
M , (Y

+(0)
M1···M5

)⊗ = Y
+(0)
M1···M5

,

(Y
(1)
M )⊗ = −Y (1)

M , (Y
+(1)
M1···M5

)⊗ = −Y +(1)
M1···M5

,

(Y
(3)
M )⊗ = −Y (3)

M , (Y
+(3)
M1···M5

)⊗ = −Y +(3)
M1···M5

,

(YMNP )
⊗ = YMNP .

(3.18)

Finally, we consider the automorphisms mentioned in subsection 2.1. For type IIA, the
automorphism (−)FL , equation (2.8), is only preserved for the signatures (9, 1) and (5, 5). In
these cases a projection to the even part under this automorphism leads to the N = 1 algebra,
i.e. OSp(1|16). Also for type IIB, the automorphisms (−)FL and *, see (2.11) and (2.12),
are only preserved for these signatures. The type IIA and IIB automorphisms for the (9, 1)
signature have been discussed in [23]. The S duality is preserved in all real forms of IIB, i.e.
also for (7, 3).

3.2. Dimensional reduction

We start with the 12-dimensional Majorana condition for (10, 2) signature,

Q̂ = 1

α10,2
B̂−1Q̂∗, B̂−1 = %̂t1 %̂t2Ĉ

−1, (3.19)

where we have indicated the signature for the phase factor explicitly. We now reduce this to 10
dimensions. There are different ways to do so, related to the identification of the 12-dimensional
timelike directions t1 and t2 with either timelike directions in the 10 uncompactified dimensions
or the two compactified dimensions. Neglecting the order of the two (which is another sign
factor† in α), there are four different choices. If the compactification directions are 11 and 12,
and we use the representation of 12-dimensional gamma matrices as in (B.4), inserting factors
of i for timelike directions, we obtain 10-dimensional Majorana conditions. Comparing these
with those in the previous subsection, we find the following relations between the phase factors
in 10 and 12 dimensions:

t1 = 11, t2 = 12 (via (10, 1)): α10,0 = −iα10,2,

t1 = 1, t2 = 11 (via (9, 2)): α±9,1 = ±iα10,2,

t1 = 1, t2 = 12 (via (10, 1)): α±9,1 = −α10,2,

t1 = 1, t2 = 2 (via (9, 2)): α8,2 = α10,2.

(3.20)

Observe that the results for signature (9, 1), which are obviously type IIA theories, depend
on whether the first compactification direction (direction 12) is spacelike, and the second one
(direction 11) timelike, as it is in the second line, or the reverse as in the third line.

The above rules apply as well to the reduction of the (6, 6) spinors. In that case the
expressions for α are obtained from the above ones by replacing αs,t by αs−4,t+4, e.g. the first
line in (3.20) gives α6,4 = −iα6,6.

We can combine the 10-dimensional Majorana spinors to 11-dimensional ones. The 11-
dimensional spinor is given by (2.15). In the above scheme, the (10, 1) theory where ‘1’ is the

† A sign change of α amounts to a redefinition of the fermionic generators with i and of the bosonic generators with
a sign.
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time direction can be obtained from the third line in (3.20). One can check that this leads to
the Majorana condition of (10, 1) with

α10,1 = α±9,1 = −α10,2. (3.21)

In principle, one could also start from the first line in (3.20).
For the (9, 2) theory, we have standard the timelike directions as ‘1’ and ‘2’. Thus this

can be obtained from the fourth line of (3.20). Combining the corresponding chiral spinors
leads to a (9, 2) Majorana spinor with

α9,2 = α8,2 = α10,2. (3.22)

To obtain the dimensional reduction of the bosonic generators, we start from those in the
complex case, but we have to take into account extra factors of i due to (3.3). For instance,

when we reduce from (10, 2) to (10, 1), we start from (2.17), which is a formula for the
0
Z, i.e.

this formula refers to the Euclidean case. Then taking into account that the 12th direction is a
time direction, the factors of i cancel for the relation between the Z generators:

Z̃M̃ = ẐM̃ 12,

(10, 2)→ (10, 1): Z̃M̃Ñ = ẐM̃Ñ , (3.23)

Z̃M̃1···M̃5
= 2ẐM̃1···M̃5 12.

On the other hand, when we reduce from (10, 2) to (9, 2) the 12th direction is spacelike, so

there are no extra factors of i when we replace
0
Z by Z in (2.17):

Z̃M̃ = iẐM̃ 12,

(10, 2)→ (9, 2): Z̃M̃Ñ = ẐM̃Ñ , (3.24)

Z̃M̃1···M̃5
= 2iẐM̃1···M̃5 12.

One can check the consistency of these rules with the reality properties of the previous
subsection, see (3.4)–(3.6). One has to keep in mind that the ⊗-operation involves factors
of α, see (A.13). In this case α2

10,2 = α2
10,1 = α2

9,2, so that this does not lead to a change of
sign in the reality property.

The reduction from 12 to 10 dimensions can be done in four different ways. With time
directions 11 and 12 we obtain

Z±M = ẐM 12 ± iẐM 11,

ZM1···M5 = 2ẐM1···M5 12,

(10, 2)→ (10, 0): Z = −iẐ11 12, (3.25)

ZMN = ẐMN,

ZM1···M4 = −2iẐM1···M4 11 12.

With time directions 1 and 11 we obtain

Z±M = i(ẐM 12 ± ẐM 11),

ZM1···M5 = 2iẐM1···M5 12,

(10, 2)→ (9, 1): Z = Ẑ11 12, (3.26)

ZMN = ẐMN,

ZM1···M4 = 2ẐM1···M4 11 12.
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Note that to check the reality properties in this case, one has to take into account that for
the Ramond–Ramond generators, the ⊗-operation involves α+

9,1α
−
9,1, see (3.11). For time

directions 1 and 12 we obtain

Z±M = ẐM 12 ∓ ẐM 11,

ZM1···M5 = 2ẐM1···M5 12,

(10, 2)→ (9, 1): Z = Ẑ11 12, (3.27)

ZMN = ẐMN,

ZM1···M4 = 2ẐM1···M4 11 12.

The two (9, 1) algebras we obtain from (3.26) and (3.27) are related to each other via a simple
redefinition. To exhibit this redefinition, it is convenient to denote the (9, 1) generators obtained
from (3.26) with Q and Z, while those obtained from (3.27) with Q̃ and Z̃. Using this notation
we find

Q+ = i1/2Q̃−, Q− = (−i)1/2Q̃+,

−iZ+
M = Z̃−M, iZ−M = Z̃+

M,

−iZ+
M1···M5

= Z̃−M1···M5
, iZ−M1···M5

= Z̃+
M1···M5

, (3.28)

Z = −Z̃, ZMN = Z̃MN,

ZM1···M4 = −Z̃M1···M4 .

This redefinition is consistent with the 12-dimensional origin of the generators given in (3.26)
and (3.27) provided we interchange the 11 and 12 directions in the latter equation.

Finally, for time directions 1 and 2 there is no change with respect to the rules of the
complex algebra:

Z±M = iẐM 12 ∓ ẐM 11,

ZM1···M5 = 2iẐM1···M5 12,

(10, 2)→ (8, 2): Z = iẐ11 12, (3.29)

ZMN = ẐMN,

ZM1···M4 = 2iẐM1···M4 11 12.

3.3. T-duality

We first discuss the conventional space/space dualities. These dualities do not change the
signature of spacetime and only exist for the signatures (9, 1) and (5, 5) where both a IIA and
a IIB algebra can be defined (see also table 1):

IIA(9,1)
Tss←→ IIB(9,1), IIA(5,5)

Tss←→ IIB(5,5). (3.30)

The identification between the supersymmetry generators is as in the complex case, see
equation (2.18) and one obtains the same T-duality rules as in the complex case, see
equation (2.19). Let us check that these T-duality rules are consistent with the reality properties
of the different generators. Starting with the reality conditions on the IIA supersymmetry
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generators as given in the first line of equation (3.7) and applying the T-duality rule (2.18) one
finds the reality condition (3.9) on the IIB supergenerators with the matrix α

(B)
9,1

α
(B)
9,1 = α

(A)
9,1 =

(
α+

9,1 0
0 α−9,1

)
. (3.31)

Applying (3.12), this leads to the following reality conditions on the bosonic generators of the
IIB (9, 1) algebra:(

Y
(0)
M ± Y

(3)
M

)∗ = β(α±9,1)
2
(
Y

(0)
M ± Y

(3)
M

)
,(

Y
(1)
M

)∗ = βα+
9,1α

−
9,1Y

(1)
M ,

(3.32)

(
Y

(0)
M1···M5

± Y
(3)
M1···M5

)∗ = β(α±9,1)
2
(
Y

(0)
M1···M5

± Y
(3)
M1···M5

)
,

Y ∗MNP = βα+
9,1α

−
9,1YMNP .

(3.33)

One may verify that the above reality conditions on the bosonic IIB generators and the
corresponding conditions (3.11) on the bosonic IIA generators are consistent with the T-duality
rules (2.19).

Also time/time dualities give a relation between the IIA and IIB (9, 1) algebras. In this
case the duality is performed in a timelike direction t . To apply the rules of subsection 2.3,
we write the gamma matrix %s as %s = i%t such that (%s)2 = (i%t)2 = 1. We thus make the
following identifications between the supersymmetry generators:

Q+ = Q1, Q− = i%tQ2, (3.34)

The calculation for the spacelike case can thus be copied, replacing everywhere %s by i%t and
s-like components of the bosonic charges by −i times the t-like components as explained in
equation (3.3). We thus we find the following result:

Z±µ = Y (0)
µ ± Y (3)

µ ,

Z±t =
(±Y

(0)
t + Y

(3)
t

)
,

Z±µ1···µ5
= Y +(0)

µ1···µ5
± Y +(3)

µ1···µ5
,

IIA, (9, 1)
Ttt←→ IIB, (9, 1): Z = iY (1)

t , (3.35)

Zµν = iYµν t ,

Zµ t = iY (1)
µ ,

Zµ1···µ4 = 2iY +(1)
µ1···µ4 t ,

Zµνρ t = iYµνρ.

Again, these T-duality rules should be consistent with the reality conditions of the
generators discussed before. The reality condition of the IIA supersymmetry generators is
determined by (3.7), in terms of the matrix α

(A)
9,1 . Calculating then Qi∗, we find

Q1∗ = Bα+
9,1Q

1, Q2∗ = −Bα−9,1Q
2, (3.36)

which are the IIB reality conditions of (3.7) when we take

α
(B)
9,1 =

(
α+

9,1 0
0 −α−9,1

)
. (3.37)
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Given this α(B) one can check that the time/time duality rules (3.35) are consistent with the
reality conditions of the real IIA (9, 1) and IIB (9, 1) algebras.

To explain how the space/time T-duality between the real algebras works, we first consider
the identification between the IIA (10, 0) and the IIB (9, 1) algebras. Note that we are dealing
with a space/time T-duality, i.e. in the IIA (10, 0) algebra the duality is performed in a spacelike
direction s, whereas in the IIB (9, 1) algebra we perform T-duality in the single timelike
direction t . Again, we can copy the results for subsection 2.3, this time we only have to insert
factors of i on the IIA side as explained for the time/time duality above. We thus find

Z±µ = Y (0)
µ ± Y (3)

µ ,

Z±s = −i
(± Y

(0)
t + Y

(3)
t

)
,

Z±µ1···µ5
= Y +(0)

µ1···µ5
± Y +(3)

µ1···µ5
,

IIA, (10, 0)
Tst←→ IIB, (9, 1): Z = iY (1)

t , (3.38)

Zµν = iYµν t ,

Zµ s = −Y (1)
µ ,

Zµ1···µ4 = 2iY +(1)
µ1···µ4 t ,

Zµνρ s = −Yµνρ.

The reality condition of the (10, 0) supersymmetry generators is, according to equation (3.15),
given by

−1

α10,0
C−1(Q+)∗ = Q−,

−1

α10,0
C−1(Q−)∗ = −Q+, (3.39)

where α10,0 is an arbitrary phase factor. The reality conditions of the (10, 0) bosonic generators
are given in (3.16). Applying the T-duality relation (3.34) on the IIA supersymmetry generators
we find the reality condition (3.9) on the IIB supersymmetry generators with the matrix α

(B)
9,1

given by

α
(B)
9,1 = −i α10,0 τ1. (3.40)

Using this expression we can write out equation (3.12) in components. This leads to the
following reality conditions on the bosonic generators of the IIB algebra:

Y
(0) ∗
M = −βα2

10,0 Y
(0)
M , Y

(0) ∗
M1···M5

= −βα2
10,0 Y

(0)
M1···M5

,

Y
(1) ∗
M = −βα2

10,0 Y
(1)
M , Y

(1) ∗
M1···M5

= −βα2
10,0 Y

(1)
M1···M5

,

Y
(3) ∗
M = βα2

10,0 Y
(3)
M , Y

(3) ∗
M1···M5

= βα2
10,0 Y

(3)
M1···M5

,

Y ∗MNP = βα2
10,0 YMNP .

(3.41)

It is now straightforward to verify that the reality conditions (3.16) and (3.41) are consistent
with the T-duality rules (3.38) between the real IIA (10, 0) and IIB (9, 1) superalgebras.

The T-duality between the real IIA (10, 0) and IIB (9, 1) algebras can be extended to the
following chain of space/time T-dualities:

IIA(10,0)
Tst←→ IIB(9,1)

Tst←→ IIA(8,2)
Tst←→ IIB(7,3)

Tst←→ IIA(6,4)
Tst←→ IIB(5,5). (3.42)



3292 E Bergshoeff and A Van Proeyen

Consider, for instance, the IIA (8, 2) supergenerators. They satisfy the following reality
conditions:

1

α8,2
%1%2C

−1(Q+)∗ = Q−,
1

α8,2
%1%2C

−1(Q−)∗ = Q+, (3.43)

where α8,2 is an arbitrary phase factor and 1 and 2 are the two timelike directions. Performing
a T-duality in one of the timelike directions, say 1, we should obtain the IIB (9, 1) algebra with
the single time direction in the 2 direction. Performing the T-duality

Q+ = Q1, Q− = i%1Q2, (3.44)

we indeed obtain the correct reality conditions for the IIB (9, 1) supergenerators, see (3.9),
with the matrix α

(B)
9,1 given by

α
(B)
9,1 = −i α8,2 τ1. (3.45)

Another possibility is to T-dualize the IIA (8, 2) algebra in one of the eight spacelike directions,
say 3. This duality proceeds similar to the T-duality of the IIA (10, 0) algebra discussed before
and leads us to the IIB (7, 3) algebra with the three timelike directions in the 1, 2 and 3
directions. Performing the T-duality

Q+ = Q1, Q− = i%3Q2, (3.46)

we indeed obtain the reality conditions of the IIB (7, 3) algebra, see (3.17), with

α7,3 = −i α8,2. (3.47)

Finally, one may also T-dualize in two different ways the IIA (6, 4) superalgebra. The
reality conditions on the supergenerators for this case are given by

−1

α6,4
%1%2%3%4C

−1(Q+)∗ = Q−,
−1

α6,4
%1%2%3%4C

−1(Q−)∗ = −Q+, (3.48)

where 1, 2, 3, 4 refer to the four timelike directions. The first possibility is to T-dualize in
one of the six spacelike directions, say 5. This leads us to the IIB (5, 5) algebra in exactly
the same way as the T-duality of the IIA (10, 0) algebra in a spacelike direction gave us
the IIB (9, 1) algebra so we will not discuss this case further. The second possibility is to
T-dualize one of the four timelike directions, say 1. This leads us to the IIB (7, 3) algebra
with the three timelike directions in the directions 2, 3 and 4. Indeed, applying the T-duality
rule

Q+ = Q1, Q− = i%1Q2, (3.49)

we find the proper reality condition on the IIB (7, 3) supergenerators with

α7,3 = −i α6,4. (3.50)

This concludes our discussion of the real T-dualities. We have summarized the situation in
table 2.

4. The ∗-algebras

In this section we will indicate the connection between the algebras and spacetime for the
different theories. In this way, we will find a place for the ∗-algebras of [12].

Up to here, all the generators that occurred on the right-hand side of the {Q,Q}
anticommutators have been treated on an equal footing. Now, we will identify two special
operators.
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Table 2. The realizations in d = 12, 11 and 10 of the real algebra OSp(1|32) for different signatures. The diagonal one-sided arrows indicate dimensional reductions.
The both-sided arrows refer to the space/space (Tss), time/time (Ttt) and space/time (Tst) dualities discussed in the text.

F10,2 F6,6

↙ ↘ ↙
M10,1 M9,2 M6,5

↙ ↘ ↙ ↘ ↙ ↘
IIA10,0 IIA9,1 IIA8,2 IIA6,4 IIA5,5

◗
◗◗❦◗◗◗�

Tst ✻
❄
TttTss

✑
✑✑✸✑✑✑✰ Tst ◗

◗◗❦◗◗◗�
Tst

✑
✑✑✸✑✑✑✰ Tst ◗

◗◗❦◗◗◗�
Tst ✻

❄
TttTss

IIB9,1 IIB7,3 IIB5,5
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The spacetime translations Pµ. To associate the algebra with a field theory, one has to define
spacetime points xµ. The spacetime is defined as the space generated from a basic point
by these translation operators, as in a coset approach. In subsection 4.1 we will show how
different choices of this translation generator leads to the different $-algebras of [12]. The
duality relations between these $-algebras is discussed in subsection 4.2.

The energy operator E. As we will show below this is the unique operator that is positive.
It will be treated in subsection 4.3.

4.1. The translation operator

We first discuss the translation operator. It has to be a vector in spacetime, and we will further
only require that it appears in a non-singular way† in the supersymmetry anticommutator. This
requirement is imposed in order that all supersymmetries act on the spacetime.

There exists no vector operator in the 12-dimensional algebra, and thus there is no
translation operator in this case. Indeed, for F theory there is no associated field theory.
In 11 dimensions there is just one vector in the algebra (2.5), and we thus identify

P̃M̃ ≡ Z̃M̃ . (4.1)

The situation becomes more interesting in 10 dimensions, where there are several vectors. In
the IIA theory (2.7) there are two vectors, Z+

M and Z−M . Each separately is not suitable as a
translation generator as, for example, Z+

M does not appear in the anticommutator of the Q−

supersymmetries. Instead, we may consider any linear combination of these two as a possible
translation generator:

PM = p+Z
+
M + p−Z−M. (4.2)

Different values of p+ and p− can be related by redefinitions of the supersymmetries.
Redefining Q± by a factor q±, the p± are redefined to p±q2

±.
When going from complex to real algebras, there is a further restriction, namely we want a

real‡ translation operator. For the (9, 1) signature the reality condition on PM and Z±M implies
that p± are real. On the other hand, the reality conditions on the supersymmetries imply that
q± are real, for fixed reality conditions on the supersymmetries, i.e. a fixed matrix α

(A)
9,1 . We

now consider the basis where α
(A)
9,1 = 1l. Then, up to redefinitions and an overall sign, there

are two possible choices for the translation generator:

(9, 1): IIA:PM ≡ Z+
M + Z−M

IIA∗:PM ≡ Z+
M − Z−M.

(4.3)

In Lagrangian theories, the spacetime is defined, and thus the translation operators are also
defined. In the IIA theories, they appear in the algebra as the operator in the first line of (4.3).
On the other hand, in the so-called IIA* theories of [12], translations appear as in the second
line of (4.3). The complete algebras of the two theories only differ in the identification of the
translation operator.

In the case of the (10, 0) or (8, 2) IIA algebras, the reality condition of Z±M in (3.16)
or (3.14) implies p− = −p∗+, and the reality conditions on the supersymmetries allow

† To be precise, we require that the translation vector part of the matrix Z ik as defined in (4.12) is a non-singular
matrix.
‡ We will use P⊗ = P as a reality condition, as the difference with P ∗ = P are just phase factors.
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redefinitions with q− = q∗+. These are sufficient to transform the translation operator to
that with p+ = p− = i. In these cases there is thus only one translation operator,

IIA: (10, 0) or (8, 2): PM ≡ i(Z+
M + Z−M). (4.4)

Of course, we could also have chosen p+ = 1, in which case

IIA′: (10, 0) or (8, 2): PM ≡ Z+
M − Z−M. (4.5)

This choice, which we label by IIA′, is thus equivalent to the choice labelled IIA, by a
redefinition of the generators. This redefinition is similar to the dualities treated at the end of
subsection 2.1. The obtained results for the IIA algebras can, of course, be generalized from
(t, s) to (t + 4, s − 4) signatures.

The possibilities for choosing the translation operator in the IIB algebras follow a similar
pattern. For (9, 1) (or (5, 5)) signature, there are two inequivalent choices of the translation
operator: in the basis where α = 1l these can be

(9, 1): IIB: PM = Y
(0)
M ,{

IIB∗: PM = Y
(3)
M ,

IIB′: PM = Y
(1)
M .

(4.6)

The two choices IIB∗ and IIB′, following the notation of [12], are equivalent up to a redefinition,
which is the S-duality transformation given in (2.13).

We stress that, in IIB as well as in IIA theories, the adapted terminology refers to a basis
in which α = 1l. If α is a different matrix, then one first has to redefine the supersymmetries
with α1/2:

Q′i = (
α1/2

)i
jQ

j . (4.7)

The newly defined generatorsQ′i satisfy reality conditions with α′ = 1l. The bosonic operators
appearing in the anticommutator{

Qi,Qj
} = Y ij (4.8)

Table 3. Detail of table 2, indicating various theories distinguished by the choice of the translation
operator. Our notation is explained in the caption of table 2. For a discussion of this table, see
subsection 4.2.

M10,1 M9,2

↓ ↓

IIA9,1 IIA∗9,1

✻
❄Tss ✑

✑✑✸✑✑✑✰
◗

◗◗�◗
◗◗❦ Ttt ✻

❄Tss

✛ ✚✚❃
IIB9,1

IIA′10,0

✻❄S
IIA10,0

IIB∗9,1

✻
❄S

IIB′9,1
✲✛

Tst
✲✛

✲✛

Tst
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are in the new basis given by

Y ′ij = (
α1/2

)i
kYk�

(
α1/2

)j
�, (4.9)

and these are to be compared with (4.3)–(4.6).
For the (7, 3) signature, there is only one inequivalent choice, similar to the (10, 0) or

(8, 2) case in IIA:

(7, 3): PM = Y
(0)
M . (4.10)

Another way to express this fact is to say that there are three S-dual versions.

4.2. T-dualities

The theories distinguished in the previous section are represented in table 3, which is in fact, a
close look at part of table 2. These theories are connected by various dualities, which we now
discuss.

Let us start with the reduction from 11 dimensions, where the translation operator is
always (4.1), or in 12-dimensional language ẐM 12. The reduction to any 10-dimensional
theory always leads to a translation generator of the form Z+

M + Z−M . However, the α matrix
is not always 1l. Indeed, from (3.20), we see that reducing via the (10, 1) theory gives α

(A)
9,1

proportional to the unit matrix, but reducing via (9, 2) gives instead a matrix proportional to
τ3. Therefore, in the first case the translation operator is the one for the IIA theory, while in
the second case, we have to apply the correction (4.9), after which the translation operator is
i(Z+

M − Z−M), thus that of IIA∗. This explains the two vertical arrows at the top of table 3.
For T dualities in 10 dimensions, the translation generators of one algebra are split into

one component in the direction of the duality direction and nine components orthogonal to that
direction. They are mapped to components of different Lorentz-covariant vectors or tensors
in the dual algebra. To identify dual algebras, we consider only how the nine translations
orthogonal to the duality direction transform.

Under space/space dualities, the operators are related by (2.19), and the α matrices remain
in standard form, following (3.31). It follows that under space/space duality IIA is mapped to
IIB and IIA∗ to IIB∗. This is indicated by the two vertical double-sided arrows in the middle
of table 3. Under time/time dualities, the bosonic operators are related in the same way as in
the previous case (according to (3.35)). However, a unit α(A) matrix is, according to (3.37),
mapped to a τ3 matrix. Therefore, Y (0) and Y (3) are interchanged by the transformation (4.9),
resulting in the Ttt rules indicated in the table. Finally, under space/time dualities, the maps
of the generators in (3.38) are the same, but the α

(B)
9,1 matrix is proportional to τ1 according

to (3.40). When we start from IIA in (10, 0), the translation generator is proportional to the
unit matrix in (ij) space, which is, by the mapping (4.9), transformed to τ 1. Therefore, it is
mapped to the IIB′ translation generator. On the other hand, in the IIA′ theory, the translation
generator is proportional to τ3, which is invariant under the redefinitions. Thus IIA′ is mapped
to IIB∗. These two space/time duality relations are indicated by the lower two double-sided
arrows in table 3.

4.3. The energy operator

We will now clarify the uniqueness of the energy operator†. A first technical issue is the
positivity of states generated by supersymmetry creation operators. We remark that {Qi,Qj ∗}
† Of course, one can redefine the energy operator by adding some other charges and still obtain a positive-definite
operator. However, then the amount of mixture of the other charges is limited, and our energy operator still has to
appear in the combination.
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cannot be positive in the case of β = −1, as its Hermitian conjugate is β{Qj ∗,Qi} =
β{Qi,Qj ∗}, and is thus not even real for β = −1. This indicates that positivity for fermion
bilinears is not a trivial issue. We can define the positivity for our purposes by taking for a
square root of β√

β
{
Qi,Qj ∗} = √

β
{
Qi,QkC

}
αj

kB
T � 0. (4.11)

Adopting the notation{
Qi,QkC

} = Z ikC−1, (4.12)

where we have now written the charge conjugation explicitly, we obtain the positivity condition√
βZ ikαj

k%
t · · ·%1 � 0, (4.13)

where the timelike gamma matrices appear. Splitting Z in %(6)Z6 where %(6) are all the basic
elements of the Clifford algebra, we find that the operator connected to %1···t contains the one
that always has to be non-zero and positive. We further have to make a projection in the (ij)

space. Let us show this by an example: the IIB algebra in (9, 1) spacetime. For a Minkowskian
signature equation (4.13) contains only the timelike % matrix, say %0. The only operators that
we thus have to consider in (2.9) are Y

ij

0 . The condition (4.13) for states with all other central
charges zero reads√

βY ik
0 αj

k > 0. (4.14)

For instance, for β = 1 and α = 1l, the operator Y
(0)
0 in (2.10) is thus the one that has to

be positive, and is identified as the energy operator. Without imposing β = 1 and α = 1l,
the reality condition on Y

ij

0 is (3.12), and one can check the consistency that the positive
combination (4.14) is then indeed also real due to αα∗ = 1l and (

√
β)∗β = √β.

Another illustrative example is provided by the case that the α matrix is given by (3.40).
This case appears in the duality between the IIB (9, 1) and IIA (10, 0) algebra. We now find
from (4.14) that

−i
√
βY

(1)
0 α10,0 � 0. (4.15)

One checks again from (3.41) that this energy operator is real. Under space/time duality this
operator is mapped onto the operator−√βZα10,0 of the Euclidean IIA superalgebra. We thus
conclude that the energy operator of the Euclidean IIA algebra is proportional to the scalar Z
generator. This is consistent with the general rule (4.13) in the case of a Euclidean space. We
conclude from this example that the energy operator does not always occur as a component of
the translation generator.

We found that the energy operator is a bosonic operator that appears in the anticommutator
of two supersymmetries with the product of all timelike % matrices %1···t . An immediate
consequence of this is that it can only be one of the generators of translations if the space
is Minkowskian. Indeed, the translations appear by definition with one % matrix in this
anticommutator. In dimension (10, 1), this is the usual situation. The time component of the
translations is the energy operator. However, this is thus not the case in the (9, 2) theory, where
the energy is part of the two-index central charge operator.

In non-Minkowskian signatures, energy is not part of the translations. In Euclidean
spacetime, it is part of a scalar central charge. If there are two or more timelike directions, it
is part of a tensor central charge.

Finally, for the (9, 1) theories, we can identify the energy operator as being the timelike
component of the vector operator that is identified as the translation in the IIA and IIB theories.
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Thus, the timelike component of the translation operators in IIA∗, IIB∗ or IIB′ algebras is not
the positive-definite operator. In the corresponding field theories, the terms with a timelike
derivative are often called ‘kinetic-energy terms’. As this time coordinate corresponds to the
timelike component of the translation generator, this is not what corresponds to the positive-
definite ‘energy’ operator that we defined here. Therefore, the terms that appear with derivatives
∂t in the action, are not positive definite. This is indeed the characteristic feature of the IIA∗,
IIB∗ or IIB′ Lagrangian theories.

5. Conclusions

In this paper we have studied how the symmetries of F-theories, M-theories and type II string
theories exhibit many faces of the OSp(1|32) algebra, rewriting it covariantly in dimensions
12, 11 and 10 of different signatures. One only has to distinguish the complex algebra and
the unique real algebra. We have shown explicitly how, both in the complex and in the real
case, the d = 10, 11 and 12 algebras are related by dimensional reduction. Furthermore,
we have shown how the (complex and real) d = 10 IIA and IIB superalgebras are related by
T-duality (see table 2). The identification of the translation generator in these algebras leads
to the $-algebras of [12]. This leads to a more detailed set of T-dualities whose structure is
indicated in table 3.

From a physical point of view one might prefer the Minkowskian algebras above the other
signatures since a priori it is not clear how to make sense out of non-Minkowskian signatures.
On the other hand, we have seen that the different signatures are related to each other by a
generalized space/time T-duality map. One of the lessons we have learned from the modern
developments on dualities in string theory is that what looks strange in one picture can make
perfect sense in the dual picture. Many-time physics could make sense within the context of
an underlying string theory. This was the philosophy adapted in [12].

There are several ways in which string or M-theory hints at the relevance of
non-Minkowskian signatures. For instance, they occur naturally in a classification of
supermembranes [24]. Also, it has been suggested that string theory has a 12-dimensional
F-theory origin with signature (10, 2), i.e. two times [25]. For recent work on two-time
physics, see [26] and references therein. Also for embeddings of branes in flat spaces one
needs two time directions [27]. Two times also occur when one considers N = 2 superstrings
leading to a d = 4 target spacetime of (2, 2) signature [28]. It would be interesting to see
whether the superalgebraic approach of this work could be applied to this case. Space/time
T-duality might then relate physics in (2, 2) dimensions to the Minkowskian (3, 1) signature.

Let us now return to the original motivation of this paper, i.e. the study of type IIB string
theory in (10, 0) Euclidean dimensions. From table 2 we see that the (10, 0) signature only
allows a real Euclidean type IIA theory. Therefore, we confirm that, in order to discuss the IIB
case, one needs complexification, as has been the case for other Euclidean theories [6]. Note
that, after complexification, the theory does not refer to any specific signature. The original
D-instanton must be considered in the context of this complex IIB theory.

At a first stage one can consider the complex T-dual of the D-instanton. Under this map
the D-instanton will be mapped to a T-dual two-block solution of a complex IIA supergravity
theory. At a second stage, one can impose reality conditions on the complex fields of the IIA
supergravity theory. These reality conditions not only specify the signature but also, since the
signs of the kinetic terms in the action are now fixed, the choice of the translation generator. The
reality conditions thus lead to a Minkowskian supergravity theory based on either the IIA9,1- or
the IIA$

9,1-algebra. Since the D-instanton solution itself is real, we expect that the dual solution
can be embedded either in the IIA9,1- or the IIA$

9,1-supergravity theory. The first embedding
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corresponds to the standard D0-brane solution of a IIA9,1-supergravity theory as discussed in
the introduction. The second T-dual picture of the D-instanton is, in the terminology of [12],
an E1-brane of a IIA$

9,1-supergravity theory.
It would be interesting to verify the existence of these two different T-dual pictures of the

D-instanton by constructing explicitly the corresponding supergravity theories and T-duality
maps.
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Appendix A. Conventions

The conventions of this paper can be found in [21]. In any even dimension d, with t timelike
directions and s spacelike dimensions, we define a chiral projection as follows:

%∗ = (−i)(s−t)/2 1

d!
εa1···ad%

a1···ad , P± = 1
2 (1l± %∗). (A.1)

The dual of a rank-n antisymmetric tensor in d = 2n dimensions is defined by

F̃a1...an = (i)d/2+t 1

n!
εa1...ad F

ad ...an+1 , (A.2)

such that

˜̃
Fa1...an = Fa1...an , %a1...an = %∗%̃a1...an ,

F̃a1...anG̃
a1...an = (−)nFa1...anG

a1...an .
(A.3)

These are used to define (anti-)self-dual tensors

F± = 1
2 (F ± F̃ ). (A.4)

For the formulae of gamma matrices in dimensions 10 to 12, we only need the cases where
ε = η = 1 in the terminology of [21]. For 10 and 12 dimensions, this is a choice, while for
11 dimensions this is necessary. Therefore, for the purpose of this paper, we can suffice with
part of the general formalism. With these choices, the essential ingredients are the following.
One has a charge conjugation matrix C, which is unitary and antisymmetric, and satisfies the
property

%T
a = −C%aC−1. (A.5)

Another unitary matrix that plays an important role in the definition of complex conjugation
of spinors (see below) is

B = −C%1 · · ·%t , B−1 = (−)(t−1)(t−2)/2%1 · · ·%tC−1, (A.6)
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where %1, . . . , %t are the gamma matrices in the t timelike directions. An important property
is

B∗ B = (−)(t−1)(t−2)/2. (A.7)

We do not write spinor indices in the main text, and neither the charge conjugation matrices
which should always appear at the right-hand side of anticommutation relations. For instance,
we write {

Qα,Qβ

} = (%µ)α
γ (C−1)γβPµ −→ {Q,Q} = %µPµ. (A.8)

Using this shorthand notation %a1···ar is symmetric for r = 1, 2 mod 4, and antisymmetric for
r = 0, 3 mod 4.

Complex conjugation can be conveniently performed by replacing it with ‘charge
conjugation’. This operation works on spinors as

λC = 1

α
B−1λ∗, (A.9)

where α is an arbitrary phase factor. When there are several spinors λi , then α may even be a
matrix αi

j , such that

α∗i j αj
k = δik. (A.10)

On matrices in spinor space, M , charge conjugation acts as

MC = B−1M∗B. (A.11)

On spinors, the square of the C operation is determined by (A.7), i.e. it is the identity for
t = 1, 2 mod 4, and minus the identity for t = 0, 3 mod 4. A Majorana spinor is a spinor that
is invariant under this charge conjugation, which is thus only possible† for t = 1, 2 mod 4.

The charge conjugation operator applied to anticommutation relations, amounts in practice
to the following rules. In the left-hand side, replace the fermionic generators by their C

conjugate. In the right-hand side, add a factor βα−2 (if α is just a number), and apply the C

operation to the gamma matrices and generators (for which it is just Hermitian conjugation).
The parameter β is a sign that depends on the convention of whether complex conjugations
maintain (β = 1) or interchange (β = −1) the order of fermions. One can then neglect the
unwritten charge conjugation matrix. Thus, for example, applying it to (A.8), it gives{

QC,QC
} = α−1β(%µ)CP ∗µα

−1 T . (A.12)

In this example we can commute α−1 T through Pµ, but we write the expression in this
way to indicate its form when Pµ is replaced by a non-trivial matrix in the space of several
supersymmetries Qi . Usually, α is just a number, and the factors thus combine to βα−2.

It is convenient to use a⊗-notation for the bosonic generators that hides the prefactor. We
thus define for all bosonic generators Z

Z⊗ ≡ βα−1Z∗α−1 T , (A.13)

e.g. P⊗µ = βα−2P ∗µ . In practice the factor β is a choice which is independent of the spacetime
dimension or signature. One could choose β = 1. On the other hand, the α factors vary for
different spacetime dimensions and signatures, and are thus relevant.

† Note that for t = 0 mod 4, a Majorana spinor would be possible if we first replace C by iC%∗. This would amount to
the other signs of parameters (ε = η = −1) in [21]. However, in this paper we will always choose ε = η = 1. With
this choice, we cannot define Majorana spinors for t = 0, 3 mod 4, but we can define symplectic Majorana spinors
(see table 1 in section 3).
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Appendix B. Gamma matrices in 10 to 12 dimensions

To distinguish the different gamma matrices in 10 to 12 Euclidean dimensions we use the
following notation:

d = 10: %M M = 1, . . . , 10,

d = 11: %̃M̃ M̃ = 1, . . . , 10, 11,

d = 12: %̂M̂ M̂ = 1, . . . , 10, 11, 12.

(B.1)

The gamma matrices for other spacetime signatures are obtained via the relations

%t = −i
0
%t ,

%s =
0
%s,

(B.2)

for any timelike direction t and spacelike direction s. Here
0
% are the gamma matrices

corresponding to the Euclidean signature. It is thus sufficient to construct the Euclidean

gamma matrices which, for simplicity, we denote in the following by % instead of
0
%.

Our starting point is the set of 32×32 matrices %M in 10 Euclidean dimensions which are
the basic building blocks of our construction. Using the general definition (A.1) for s = 10,
t = 0, we have

%∗ = −i%1 . . . %10 ≡ %11. (B.3)

The %M together with %11 define the gamma matrices in 11 Euclidean dimensions.
To construct the gamma matrices in 12 Euclidean dimensions we define the 64 × 64

matrices

%̂M = %M ⊗ 1l32,

%̂11 = %11 ⊗ σ1,

%̂12 = %11 ⊗ σ2,

%̂∗ = −%̂1 . . . %̂12 = %11 ⊗ σ3.

(B.4)

All charge conjugation matrices we use in this paper are unitary and antisymmetric, i.e.

d = 10, 11: C†C = 1l32, CT = −C,

d = 12: Ĉ†Ĉ = 1l64, ĈT = −Ĉ.
(B.5)

In the notation of [21], we always use C = C+ (d = 10, 11) and Ĉ = Ĉ+ (d = 12), i.e.
η = η̂ = 1. The charge conjugation matrix C of 10 dimensions can also be used as charge
conjugation in 11 dimensions. The 64×64 d = 12 charge conjugation matrix Ĉ is constructed
as follows:

Ĉ = C ⊗ σ1. (B.6)

All these charge conjugation matrices satisfy the property (A.5).
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