598 research outputs found
Cremophor EL causes (pseudo-) non-linear pharmacokinetics of paclitaxel in patients
The non-linear plasma pharmacokinetics of paclitaxel in patients has been well established, however, the exact underlying mechanism remains to be elucidated. We have previously shown that the non-linear plasma pharmacokinetics of paclitaxel in mice results from Cremophor EL. To investigate whether Cremophor EL also plays a role in the non-linear pharmacokinetics of paclitaxel in patients, we have established its pharmacokinetics in patients receiving paclitaxel by 3-, 24- or 96-h intravenous infusion. The pharmacokinetics of Cremophor EL itself was non-linear as the clearance (Cl) in the 3-h schedules was significantly lower than when using the longer 24- or 96-h infusions (Cl175–3 h = 42.8 ± 24.9 ml h−1 m−2; Cl175–24 h = 79.7 ± 24.3; P = 0.035 and Cl135–3 h = 44.1 ± 21.8 ml h−1 m−1; Cl140–96 h = 211.8 ± 32.0; P < 0.001). Consequently, the maximum plasma levels were much higher (0.62%) in the 3-h infusions than when using longer infusion durations. By using an in vitro equilibrium assay and determination in plasma ultrafiltrate we have established that the fraction of unbound paclitaxel in plasma is inversely related with the Cremophor EL level. Despite its relatively low molecular weight, no Cremophor EL was found in the ultrafiltrate fraction. Our results strongly suggest that entrapment of paclitaxel in plasma by Cremophor EL, probably by inclusion in micelles, is the cause of the apparent nonlinear plasma pharmacokinetics of paclitaxel. This mechanism of a (pseudo-)non-linearity contrasts previous postulations about saturable distribution and elimination kinetics and means that we must re-evaluate previous assumptions on pharmacokinetics–pharmacodynamics relationships. © 1999 Cancer Research Campaig
In vitro functional correction of Hermansky-Pudlak Syndrome type-1 by lentiviral-mediated gene transfer.
Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by oculocutaneous albinism, bleeding tendency and susceptibility to pulmonary fibrosis. No curative therapy is available. Genetic correction directed to the lungs, bone marrow and/or gastro-intestinal tract might provide alternative forms of treatment for the diseases multi-systemic complications. We demonstrate that lentiviral-mediated gene transfer corrects the expression and function of the HPS1 gene in patient dermal melanocytes, which opens the way to development of gene therapy for HPS
Mid-term outcomes of an everolimus-eluting bioresorbable vascular scaffold in patients with below-the-knee arterial disease:A pooled analysis of individual patient data
Previous studies on everolimus-eluting bioresorbable vascular scaffolds (BVS) have shown promising 1-year primary patency rates in infrapopliteal arteries. Literature from large cohorts on long-term outcomes with the infrapopliteal Absorb BVS (Abbott Vascular) is lacking. The aim of this study is to pool published and unpublished data to provide a more precise estimate of the 24-month outcomes of Absorb BVS for the treatment of infrapopliteal disease. For the pooled analysis, updated original and newly collected data from three cohorts on treatment with the Absorb BVS for de novo infrapopliteal lesions were combined. The primary endpoint was freedom from restenosis. Secondary endpoints were freedom from clinically driven target lesion revascularization (CD-TLR), major amputation and survival. The pooled analysis included a total of 121 patients with 161 lesions, treated with 189 Absorb BVS in 126 limbs. The mean age of the patients was 73 years, 57% had diabetes mellitus, and 75% were classified as Rutherford-Becker class 5 or 6. Of the 161 lesions, 101 (63%) were calcified and 36 (22%) were occlusions. Successful deployment was achieved with all scaffolds. Freedom from restenosis was 91.7% and 86.6% at 12 and 24 months, respectively, and freedom from CD-TLR was 97.2% and 96.6%. Major amputation occurred in 1.6% of the limbs. Overall survival was 85% at 24 months. In conclusion, this pooled analysis represents the largest reported analysis of mid-term results of the Absorb BVS for the management of chronic limb-threatening ischemia. At 24 months, the Absorb BVS was safe with promising clinical outcomes for the treatment of infrapopliteal disease
Development of a Prediction Model for the Occurrence of Stenosis or Occlusion after Percutaneous Deep Venous Arterialization
Percutaneous deep venous arterialization (pDVA) is a promising treatment option in patients with chronic limb-threatening ischemia. Stenosis and occlusions, which are the Achilles' heel of every revascularization procedure, can be treated when detected early. However, frequent monitoring after pDVA is required because when stenosis or occlusions develop is unknown. Therefore, patients currently need to visit the hospital every 2 weeks for surveillance, which can be burdensome. Accordingly, we aimed to develop a model that can predict future stenosis or occlusions in patients after pDVA to be able to create tailor-made follow-up protocols. The data set included 343 peak systolic velocity and 335 volume flow measurements of 23 patients. A stenosis or occlusion developed in 17 patients, and 6 patients remained lesion-free. A statistically significant increase in the risk of stenosis or occlusion was found when duplex ultrasound values decreased 20% within 1 month. The prediction model was also able to estimate a patient-specific risk of future stenosis or occlusions. This is promising for the possibility of reducing the frequency of follow-up visits for low-risk patients and increasing the frequency for high-risk patients. These observations are the starting point for individual surveillance programs in post-pDVA patients. Future studies with a larger cohort are necessary for validation of this model
An implementation of the number field sieve
The Number Field Sieve (NFS) is the asymptotically fastest known factoring algorithm for large integers. This article describes an implementation of the NFS, including the choice of two quadratic polynomials, both classical and lattice sieving, the block Lanczos method and a new square root algorithm. Finally some data on factorizations obtained with this implementation are listed, including the record factorization of 12^{151-1
Multicentre quantitative Ga-68 PET/CT performance harmonisation
Purpose Performance standards for quantitative F-18-FDG PET/CT studies are provided by the EANM Research Ltd. (EARL) to enable comparability of quantitative PET in multicentre studies. Yet, such specifications are not available for Ga-68. Therefore, our aim was to evaluate Ga-68-PET/CT quantification variability in a multicentre setting. Methods A survey across Dutch hospitals was performed to evaluate differences in clinical Ga-68 PET/CT study protocols. Ga-68 and F-18 phantom acquisitions were performed by 8 centres with 13 different PET/CT systems according to EARL protocol. The cylindrical phantom and NEMA image quality (IQ) phantom were used to assess image noise and to identify recovery coefficients (RCs) for quantitative analysis. Both phantoms were used to evaluate cross-calibration between the PET/CT system and local dose calibrator. Results The survey across Dutch hospitals showed a large variation in clinical Ga-68 PET/CT acquisition and reconstruction protocols. Ga-68 PET/CT image noise was below 10%. Cross-calibration was within 10% deviation, except for one system to overestimate F-18 and two systems to underestimate the Ga-68 activity concentration. RC-curves for F-18 and Ga-68 were within and on the lower limit of current EARL standards, respectively. After correction for local Ga-68/F-18 cross-calibration, mean Ga-68 performance was 5% below mean EARL performance specifications. Conclusions Ga-68 PET/CT quantification performs on the lower limits of the current EARL RC standards for F-18. Correction for local Ga-68/F-18 cross-calibration mismatch is advised, while maintaining the EARL reconstruction protocol thereby avoiding multiple EARL protocols
- …