
A World Wide Number Field Sieve
Factoring Record: On to 512 Bits

James Cowie1 , Bruce Dodson2 , R. Marije Elkenbracht-Huizing3 ,

Arjen K. Lenstra4 , Peter L. Montgomery5 , Jorg Zayer6

1 Cooperating Systems Corporation, 12 Hollywood Drive, Chestnut Hill, MA 02167,
U.S. A. E-mail: cowie©mumonkan. cooperate. com

2 Department of Mathematics, Lehigh University, Bethlehem, PA 18015-3174, U.S.A.
E-mail: badO©lehigh. edu

3 Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam,
The Netherlands. E-mail: marije©cwi .nl

4 Citibank, N.A., 4 Sylvan Way, Parsippany, NJ 07054, U.S. A.
E-mail: arjen.lenstra©citicorp.com

5 780 Las Colindas Road, San Rafael, CA 94903-2346, U.S. A.
E-mail: pmontgom©cwi. nl

5 Gartenstrasse 13, 66352 Dorf im Warndt, Germany.
E-mail: j . zayer©ids-scheer. de

Abstract. We present data concerning the factorization of the 130-digit
number RSA130 which we factored on April 10, 1996, using the Num­
ber Field Sieve factoring method. This factorization beats the 129-digit
record that was set on April 2, 1994, by the Quadratic Sieve method.
The amount of computer time spent on our new record factorization is
only a fraction of what was spent on the previous record. We also discuss
a World Wide Web interface to our sieving program that we have devel­
oped to facilitate contributing to the sieving stage of future large scale
factoring efforts. These developments have a serious impact on the secu­
rity of RSA public key cryptosystems with small moduli. We present a
conservative extrapolation to estimate the difficulty of factoring 512-bit
numbers.

1 Introduction

Over the past years several new record integer factorizations have been reported
at cryptology conferences. At Eurocrypt'89 a record 100-digit factorization was
announced; the result was obtained by running an existing factoring algorithm,
the Quadratic Sieve method (QS), using a novel factoring by email approach
(cf. [13]). At Eurocrypt'90 that approach was improved by a new double large
prime variation of QS (cf. (14]): at the conference a record 107-digit factorization
was reported, but the same approach led to a record 116-digit factorization in
the journal version of the conference paper, later to a record 120-digit factoriza­
tion at Crypto'93 (cf. [4]) and ultimately to a record 129-digit factorization at
Asiacrypt'94 (cf. [l]).

383

In this paper we present a new 130-digit integer factoring record. Although
our result may seem a marginal improvement over the previous record, the new
record is in fact a dramatic step forward. In the first place, the record has been
achieved by the Number Field Sieve factoring method (NFS) in only a fraction
of the amount of computer time spent on the previous record. This shows that
NFS is superior to QS for numbers of approximately 130 digits and larger, as far
as current implementations are concerned. This had been suspected for a while
(cf. [2]); experiments described in [6] suggest, however, that the crossover point
between QS and NFS lies considerably lower than 130 digits.

In the second place, part of the work was carried out using a novel World
Wide Web interface to our NFS implementation. Compared to the old factoring
by email approach, the new interface makes it much easier to contribute to large
factoring tasks: anybody with access to the World Wide Web is only a few mouse
clicks away from becoming a factoring contributor. Because many processors on
the World Wide Web have only limited memory, this required a new, more
flexible NFS implementation, on top of the design and implementation of some
necessary Common Gateway Interface scripts.

By using their Web browsers to complete fill-out forms, users invoke simple
server-side CGI scripts written in Perl. A registration script, for example, creates
appropriate entries in a distributed database of contributors, including a "privacy
level" that allows contributors to request partial or total anonymity within the
sieving effort. "Status" scripts allowed users to glimpse the latest snapshot of
the sieving progress, and determine their standing within the "Hall of Fame"
of major contributors. Still other Web pages and CGI scripts offered password­
protected administrative services, input range checkout, relation set checkin,
online tutorial information, and so forth.

Internet-distributed computing efforts are especially prone to transient con­
nectivity failures; it is not uncommon for sites to disappear from view for minutes
or hours at a time. A Web-based sieving effort centered around a central Web
server would have imposed severe performance bottlenecks, as well as making
the global sieving process prone to single-point failure. To promote scalability
and fault-tolerance, additional CGI scripts made it possible to "check out" per­
sonalized copies of the Web server software, hyperlinked back to the originating
server. These derivative subservers came complete with a large initial subrange
of inputs, plus hierarchical protocols for refreshing the server's pool of inputs.
As a result, only a prolonged failure (on the order of tens of hours) of the root of
the server tree--the primary Web server at Cooperating Systems-would have
brought the global sieving process to a halt.

We feel confident that a global Web-based computational environment, guar­
anteeing the anonymity of participants and based on "best-effort" coordination
of contributed resources, can easily scale to hundreds of thousands of globally
distributed participants. The practical consequences of these developments for
the security of 512-bit RSA-moduli are interesting, as we show in Section 2. Sec­
tion 3 gives background information on the 130-digit factorization. We conclude
with a description of the Web-interface in Section 4.

384

2 On the security of 512-bit RSA-moduli

Both QS and NFS consist of three major steps: a sieving step to collect a set of
data, a matrix step to find dependencies among the data, and a final step where
the dependencies are used to derive a factorization. The final step of neither
QS nor NFS is considered to be problematic: for QS because it is an entirely
straightforward computation, for NFS because of the method developed by Peter
L. Montgomery (cf. [15]). In this section we therefore restrict our attention to
the sieving and matrix steps.

Let
Lx[u,v] = exp(v(lnx)"(lnlnx) 1-").

It is well known that the sieving and the matrix step of QS both run in heuristic
expected time Ln[l/2, 1 + o(l)], for n -7 oo, with n the number to be factored
(cf. [11]). For numbers in our current range of interest, however, the sieving step
takes considerably more time than the matrix step: for the factorization reported
in [l] for instance less than 0.33 of the total effort was spent on the matrix
step. Large scale QS factoring efforts have shown that the run time estimate
Ln[l/2, 1 + o(l)] with o(l) = 0 can be used for limited range extrapolations (cf.
[1, 4, 14]). Thus, we may expect that the sieving step for the QS-factorization of
a 512-bit RSA-modulus would require about one hundred times the effort spent
on the 129-digit QS record.

The sieving and the matrix step of NFS both run in heuristic expected
time Ln[l/3, (64/9) 113 + o(l)], for n -+ oo (cf. [12]). Asymptotically this is
substantially faster than QS. Although the sieving step is still the most time
consuming part of the computation, for NFS the difference is much smaller
than for QS: for a 119-digit NFS factorization reported in [6], the matrix step
took about 73 of the entire computation. Assuming that the run time estimate
Ln[l/3, (64/9) 113 + o(l)] can again, with o(l) = 0, be used for limited range
extrapolations (our results combined with the ones from [6] support this as­
sumption), we find that the sieving step for the NFS-factorization of a 512-bit
RSA-modulus would require only about thirty times the effort spent on our cur­
rent 130-digit NFS record. Since the sieving effort spent on our 130-digit record
ould have been less than 153 (as shown below) of the effort spent on the pre­
ious 129-digit record, we conclude that NFS-sieving for a 512-bit number could
:i,ke less than 5 times the effort spent on the old 129-digit record, and less than

one twentieth of the time required for QS. We stress that these comparisons only
hold for current QS and NFS implementations-both might be improved in the
future.

This is a disturbingly small security margin for 512-bit RSA-moduli. Several
things have to be kept in mind, however. In the first place, this estimate addresses
only the sieving step. Although we passed the crossover point between the sieving
steps of QS and NFS, we have not reached it yet for the matrix steps-the
NFS matrix for our 130-digit number had about seven times as many rows and
columns as the QS matrix for the 129-digit record. The matrix step for a 512-bit
NFS-factorization would without any doubt pose an interesting new challenge.

385

Right now this challenge looks hard, but certainly not unsurmountable. Secondly,
the estimate does not incorporate possible improvements in the NFS-sieving
step that are currently under consideration, and that could have a substantial
impact on the sieving time. Finally, we want to reiterate that it is unwise to
make predictions about the difficulty of factoring (cf. [1,9]).

3 Factoring RSA130

RSA130. Until April 10, 1996, RSA130 was the smallest unfactored number on
the 'RSA challenge list' of d-digit composite numbers, for d = 100, 110, 120, ... ,
490, 500. This list was compiled by RSA Data Security Corporation Inc. in the
following manner (cf. [18]):

Each RSA number is the product of two randomly chosen primes of ap­
proximately the same length. These primes were both chosen to be con­
gruent to 2, modulo 3, so that the product could be used in an RSA
public-key cryptosystem with public exponent 3. The primes were tested
for primality using a probabilistic primality testing routine. After each
product was computed, the primes were discarded, so no one--not even
the employees of RSA Data Security-knows any product's factors.

RSAlOO was factored in April 1991, RSAllO in April 1992 (cf. [5]), and RSA120
in June 1993 (cf. [4]). All these factorizations were achieved using the Quadratic
Sieve factoring method. In this section we discuss our Number Field Sieve fac­
torization of RSA130:

RSA130 =18010 82088 68740 48059 5165616440 59055 66278 1025167694013491101210214

50056 66254 02440 48387 34112 75908 12303 37178 18879 66563 1820132148 80557.

We assume that the reader is familiar with NFS (cf. [12]).

Polynomial selection. Let n = RSA130. The first step of NFS is to select at
least two irreducible polynomials with integer coefficients and a common root
modulo n, the number to be factored. Although using more than two polynomials
may turn out to be more efficient (cf. [8]), we used only two, as in [6,10,12].
In those references the choice of polynomials is restricted to the case where
the common root m is an integer close to n 1/(d+l) for some small integer d
(such as 4 or 5); the polynomials can then be chosen as fi(X) = X - m and

h(X) = L:1=o ciX;, where n = L:1=o cimi with -m/2 S Ci S m/2 is a base m
representation of n.

For j = 1, 2 and integers a, b, let Nj (a, b) = fj (a/ b)bdegree(/1) E Z. Relations,
the type of data we collect during the sieving, are defined as pairs of coprime
integers a, b, with b > 0, such that Nj (a, b) has only prime factors S Bj, for
j = 1, 2, and for appropriately chosen bounds B1 and B2. Thus, fi and h
should be chosen such that the N/s have a relatively high probability to yield
relations. At the moment only ad hoe strategies are known, which are not proven
to construct and select the best polynomials possible. For RSA130 we did the
following. Scott Huddleston from Oregon State University provided us with a

386

Table 1

yield norm B:25 102 103 104 10s

9 25 168 1229 9592

14 100.03 299.13(14) 9(3) 25(3) 174(2) 1246(3) 9714(2)
4 99.13 231.13(10) 11(1) 25(4) 192(1) 1287(2) 9751(1)
1 93.73 100.03(1) 7(7) 19(12) 174(3) 1187(10) 9595(7)

12 87.53 320.23(15) 5(10) 24(5) 158(10) 1214(6) 9496(14)
8 82.23 262.53(11) 8(4) 24(6) 156(11) 1205(7) 9531(11)
3 80.03 104.73(2) 7(8) 21(9) 170(4) 1172(14) 9520(12)

10 77.83 222.13(9) 6{ 9) 27(1) 162(7) 1225(5) 9689{ 4)
2 76.83 122.73(3) 8(5) 21(10) 163{ 5) 1177(13) 9603{ 6)

11 76.63 275.23(13) 5(11) 23(8) 163(6) 1318{ 1) 9573(8)
15 75.93 183.73(7) 8{ 6) 26(2) 159(9) 1146(15) 9535(9)
9 75.43 274.23(12) 10(2) 20(11) 143(13) 1186(11) 9417(15)
5 70.13 159.83(5) 4(12) 18(13) 160(8) 1195(8) 9511(13)
7 64.93 152.03(4) 3(13) 18(14) 132(15) 1185(12) 9708(3)

13 64.23 183.23(6) 3(14) 24(7) 139(14) 1242(4) 9605(5)
6 57.83 221.43(8) 3(15) 14(15) 151(12) 1191(9) 9534(10)

list of 15 pairs of polynomials as above with d = 5 (i.e., each pair consisting
of one linear and one degree 5 polynomial), ranked from 1 (best) to 15 (worst)
depending on his experimental "goodness" measure that depends on the average
size of the Nj 's over some sieving rectangle.

The ranking that is most relevant for practical purposes is the actual yield
in the sieving step. This is however rather expensive to compute. We did sieving
experiments with all 15 pairs (using 500 special q's, see below), and found that
the pair that was the second worst (number 14) in Huddleston's ranking was
most productive. In Table 1 the yields of all pairs are given in the second column,
sorted by their relative yield compared to pair number 14. The number in the
first column refers to the ranking given by Huddleston. For 7 of the 15 we did
more sieving (a total of 800 special q's), confirming the earlier ordering, but
giving slightly different relative percentages.

Assuming that a ranking is a randomly chosen permutation of {1, 2, ... , 15},
we define the correlation coefficient of two rankings x and y as (E(xy) -
E(x)E(y))/(O'(x)a(y)), with E denoting the expected value, and

O"(x) = JE(x2) - E(x)2.

Note that for all rankings x we have that E(x) = 8 and O"(x) = J56!3. The
correlation coefficient of Huddleston's and the sieving rank is 0.1. This indicates
that Huddleston's goodness measure does not effectively predict the sieving yield.
It might be interesting to have a closer look at some of the polynomials he
rejected.

In Table 1 we give several other rankings that are easy to compute and
that might be useful to predict the sieving yield. The norm of a pair (X -
m, I:~=O ciXi) is defined as m I:~=O ICil· In the past rankings based on the norm

387

have often been used. For the 15 candidates the norms relative to the pair with
smallest norm are given in column 3, with the resulting norm rank in paren­
theses. The correlation coefficient of this norm rank and the sieving rank is
-0.26. We conclude that the norm does not lead to a useful ranking. Columns 4
through 8 give the number of roots of the second polynomial of each pair modulo
all primes< B, for B = 25, 102 , 103, 104, and 105 , with the resulting ranking
between parentheses: more roots are supposedly better and therefore give a lower
ranking (the second row contains the values of 7r(B)). The resulting correlation
coefficients with the sieving rank are: 0.69, 0.54, 0.77, 0.29, and 0.24. Some of
these rankings are well correlated with the sieving rank, but they are not reliable
predictors: polynomial number 11, ranked 9th for sieving, ranks first for B = 104 .

The ranking induced by the average root ranking has correlation coefficient 0.75
with the sieving ranking.

We also found the much better ranking 2, 1, 5, 7, 10, 3, 4, 6, 11, 8, 9, 13, 14,
12, 15 (i.e., Huddleston's number 14 got ranked second, his number 4 got ranked
first, etc., until his number 6 which got ranked last) with correlation coefficient
0.86 with the sieving rank. This ranking was obtained by combining the integral
of Ji · h over the sieving region with information about the number of real roots
and roots modulo primes < 104 , and by considering extreme residual values after
sieving instead of average values. Details may be published at a later occasion.
We leave the problem of polynomial selection for NFS as a subject for further
study.

As a result of the sieving experiments, we decided to use the polynomial that
ranked as number 14 on Huddleston's list: d = 5, m = 125 744111684180059
80468, fi (X) = X - m, and

h(X) = 5748302248738405200X5 + 9882 26191 7482286102X4

-13392 49938 91281 76685 X 3 + 16875 25245 88776 84989 x 2

+ 3759 90017 48552 08738 x - 46769 93055 39319 05995.

Sieving. To find relations we mostly 7 used lattice sieving with sieving by vectors
as introduced in (17]. We followed the approach sketched and used in (10] and (6],
with three important modifications. In the first place, unlike (17], but like (7] we
allowed special q's in N 2 (a, b) that are larger than B2. As usual, disjoint ranges
of special q's were assigned to different processors, and for efficiency reasons the
sizes of the q's depended on the amount of available memory. For implementation
technical reasons the q's were bounded from above by 2 ·365 ~ 1.2·108 • Secondly,
unlike (10] we allowed processors to use lower values for B1 and B2, depending
on memory restrictions. In the third place, the physical size of the lattice sieving
array depended on the size of the available memory. As a consequence of these
changes, the sieving program could be distributed much easier over a variety of
machines than the program from [10].

7 We also did a relatively small amount of traditional line-by-line sieving.

388

Table 2

Memory q < B2 q2:'.: B2
q/106 E q/106 2

4M 86
6M 43
8M [0.5, 1.9) 29

lOM [1.9, 3.8) 21
12M [3.8,5.8] 17
14M [5.8, 7.9) 14
16M [7.9, 10.0] 12

218M [2, 11.4] 2

We describe this set-up in more detail. Let B 1 = 3497867 and B2 = 11380951.
The number of roots of fj modulo the primes s Bj is 250001 for j = 1 and
750001 for j = 2. All processors that have at least 18 megabytes available to the
siever used this B1 and B2; all available memory that remained after storing all
relevant factor base data for these B1 and B2 was used for the sieving array.
As a result 18 megabyte machines used a sieve of at least 2 megabytes: about 2
megabytes if the special q is > B2, more than 2 megabytes if q < B2, because
in that case only the (prime, root) pairs from the second factor base for which
the prime is at most q need to be stored (so that any remaining memory could
be assigned to the sieve array as well).

If less than 18 megabytes was available, we did the following. At least 2
megabytes was used for the sieve. If the special q is < B2, the complete first
factor base was used, and all (prime, root) pairs from the second factor base
with the primes q. This meant that not all q < B2 could be used; Table 2 gives
the ranges of q's less than B2 that we used (and that fit) on machines of various
sizes; the q's were also bounded from below to make sure that at least some q's
were available for smaller machines. Special q's less than B 2 were not used on
machines with at most 6 megabytes. If the special q is 2 B2, only [x·250001) pairs
from the first factor base and [x · 750001] pairs from the second factor base were
used, for the largest positive x s 1 such that all relevant data fit in memory.
So, processors with small memories used rather small factor bases, and were
therefore not very productive. We therefore reserved the smaller (and better)
special q's (2 B2) for the larger machines; Table 2 gives the lower bounds that
we used for q 2 B2 on machines of various sizes. In both cases any remaining
memory was used for the sieve as well. Using this set-up the more than 6 million
special q's that were available could be distributed over the available processors
(and memory) without running out of sieving tasks and without wasting good
q's on small machines.

Sieving time. Because sieving was done on machines of many different sizes,
and because the number of relations found per second strongly depends on the
memory size, it is hard to estimate how much time was spent on the sieving step.
We can say, however, that the first ~ 25 · 105 special q's would have generated
about 7·107 relations, with at most 203 duplicates (and therefore at least 56·106

389

unique relations, which sufficed; see below). Since we sieved over the rectangle
[-4096,4095] x [1,4000] not including the 'even,even' locations, inspecting a
total of :::: 6 · 1013 sieve locations would have sufficed, with approximately one
of every 860000 locations producing a relation. On a Spare 10 workstation with
24 megabytes available for the sieving process, this would have taken 16.5 years.
For 32, 40, and 48 megabytes these timings improve to 15.4, 14.7, and 14.5 years,
respectively, but for 20, 16, and 12 megabytes it deteriorates to 18.5, 25, and
32 years, respectively. On the same workstation sieving for the 129-digit QS
record would have taken approximately 120 years (cf. [1]). All these timings are
:::: 243 better on a 90Mhz Pentium PC. It is therefore fair to say that sieving
for RSA130 could have been done in less than 153 of the time spent on the
129-digit number.

Cycles. As usual we refer to the relations introduced above as full relations and
the relations with one or more large primes> Bj in the factorization of Nj(a, b)
as partial relations. With B1 = 3497867 and B2 = 11380951 the number of full
relations combined with the number of cycles (cf. [6]) among the partial relations
should be comfortably more than 250001+750001 :::: 106 before the factorization
can be completed (cf. [12]). The number of cycles can be counted by finding the
useful partial relations (i.e., the largest subset of the partials in which each large
prime occurs at least twice), and by subtracting the resulting number of large
primes from the number of usefuls. In Table 3 it can be seen how the number of
usefuls and cycles at first slowly increases as a function of the number of partials
(after all duplicates had been removed), and how first the number ofusefuls and
then the number of cycles suddenly grows quite rapidly, as illustrated by the
average cycle length (#usefuls /#cycles) in the last column. This was expected
based on the data from [6]. The number in row labeled i and column labeled j of
Table 4 gives the number of relations with i large primes in N1 (a, b) and j large
primes in N 2 (a, b), in the final collection of 56515672 relations. The relations
referred to in columns labeled 4, 5, and 6, and those in rows labeled 4 and 5
were found early in the sieving stage when one of the authors was using slightly
larger B1 and B2 than given above. In uncompressed format, listing only the
primes> 2·106 per Ni(a, b), the final collection took about 3.5 gigabytes of disk
space.

To make the amounts of data more manageable, we first extracted 8426508
partial relations leading to the shortest 968737 cycles (note that 48400+968737 =
1017137 > 106 as required). These data could have been used to build a matrix of
1017137 rows (corresponding to the fulls and the cycles) and 1000002 columns
(corresponding to the primes ~ Bi in Ni(a, b)). As shown in [6: Section 5],
however, removing all large primes from the matrix makes it relatively dense
and thus expensive to process the matrix. We therefore also included columns
in the matrix for large primes that occur at least 4 times in the collection of
8426508 relations. This led to 826592 and 1678272 additional columns for large
primes in Ni(a,b) and N 2(a,b), respectively, 1527391 new 'full relations' (i.e.,
partial relations with only large primes corresponding to the new columns), and
1946210 cycles among the remaining partial relations. The resulting matrix has

390

Table 3

Date #fulls #partials #usefuls #cycles length

950830 4427 2524973 365 179 2.0
9509 20 21407 8288179 4021 1880 2.1
951014 36434 16756214 14202 6365 2.2
951105 41248 26872640 26450 10553 2.5
951124 44031 35016001 37969 14177 2.7
951210 45653 41319347 47660 16914 2.8
951219 46648 45431262 8214349 224865 36.5
960106 48211 53282421 11960120 972121 12.3
960114 48400 56467272 18830237 2844859 6.6

Table 4

0 1 2 3 4 5 6

0 48400 479737 1701253 1995537 6836 403 9
1 272793 2728107 9617073 11313254 39755 2212 44
2 336850 3328437 11520120 13030845 56146 3214 71
3 1056 9022 24455 0 0 0 0
4 3 9 31 0 0 0 0

1000002+826592+1678272 = 3504866 columns and 48400+1527391+1946210 =
3522001 rows. Note that 3522001- 3504866 = 1017137 -1000002, i.e., the larger
matrix is over-square by the same amount as the original matrix, as expected.

A matrix with more than 3.5 · 106 rows and columns is rather large, which
makes the matrix step difficult. Also, we may expect ~ (8426508 + 48400)/2
relations per dependency, which makes the final step quite expensive too. It is
likely that if we had collected more relations, far fewer than 8426508 partial
relations would have sufficed to generate the required> 106 - 48400 cycles, thus
making the matrix and final steps easier. In future factorizations this strategy
should probably be used to keep the matrix size within reasonable bounds. Also
one could try the filtering strategy described in [7], which might give better
results than the approach followed here.

The matrix step. After substituting free relations (cf. [12]) for the 7000 heav­
iest rows, and removing some of the excess heavy rows, the above 3522001 x
3504866 matrix resulted in a 3516502 x 3504823 bit matrix of total weight
138690744 (on average 39.4 entries per row). To find dependencies modulo 2
among the rows of this matrix we used the blocked Lanczos method from [16] on
a Cray C-90 supercomputer. Blocked Lanczos consists of a sequence of multipli­
cations of the matrix and its transpose with a blocked vector, i.e., b bit-vectors
simultaneously, where b is an implementation dependent blocking factor. The
number of multiplications needed is, approximately, m/(b - 0.76) for an m x m
bit matrix. The best configuration we managed to find on the Cray C-90 was
b = 64 which resulted in 4.37 seconds per iteration.

As a result it took 67.5 CPU-hours (using a single processor) and 700
megabytes central memory to find 18 dependencies. Each dependency consisted

391

Table 5
0 1 2 3 4 5 6

0 24242 154099 330738 255742 1054 52 1
1 75789 443647 885136 648148 2734 164 2
2 56326 300369 565605 389046 1923 131 4
3 182 776 1105 0 0 0 0
4 2 4 7 0 0 0 0

of~ 4140000 relations (:::; 3500 of which are free). For one of the dependencies,
the breakdown of the large primes amongst its 4140328 (non-free) relations is
given in Table 5; this dependency also contained 3506 free relations.

The final step. Let S be the set of relations in a dependency, let o:2 be such
that f2(a2) = 0, and let 1.p be the homomorphism from Z[a2] to Z/nZ that maps
a2 tom modulo n. From the matrix step we know that 'Yi= TI(a,b)es(a-bm) is
a square in Z, say /3~, and that "12 = TI(a b)es(a - ba2) is a square in Z[o:2], say
/3~. Furthermore, we have that 'Yi = 1.p("12,) mod n. In the final step we compute
/31 mod n and 1.p(/32) and attempt to factor n by computing gcd{,81 mod n -
1.p(/32), n).

Computing /31 mod n is straightforward, because the prime factorization of
all a-bm's is known. To compute r.p(.82) we used the method from [15]. Instead of
'}'2, we work with TI(a,b)es(a-ba.2)±1 , where the exponents are chosen as 1 or -1
in an attempt to maximize the amount of cancellation between the numerator
and the denominator. Note that the -l's can easily be incorporated in the
previous argument. The resulting fraction for the product would, when written
out, have approximately 9.7 million decimal digits. After about 105 iterations,
each of which reduced the numerator or denominator of the product by about
200 decimal digits, the algebraic square root was reduced to the trivial square
root of 1. This took 49.5 CPU-hours on a single 150 MHz R4400SC processor of
an SGI Challenge. The first two dependencies resulted in the trivial factorization.
The third one produced:

RSA130 =39685 99945 95974 54290 16112 61628 83786 06757 5449112810 06483 2555151243

. 45534 49864 67359 72188 40368 68972 74408 86435 63012 63205 06960 09990 44599.

4 The Web-interface

Previous factoring efforts used electronic mail as a medium for simple sieving task
distribution and relation collection. Since the 129-digit factorization reported at
Asiacrypt'94 (cf. [1]), however, Web browser technology has achieved universal
penetration of the desktop. Using the Common Gateway Interface (CGI) for
providing simple scripted executable content, we constructed a package of Perl
scripts that automated most of the work involved in constructing an ad hoe,
global-scale sieving workgroup.

392

Web-factoring volunteers commonly located our Web server by way of a com­
mercial search engine. From one set of Web pages, they could then access a
wide range of support services for the sieving step of the factorization: NFS
software distribution, project documentation, anonymous user registration, dis­
semination of sieving tasks, collection of relations, relation archival services, and
real-time sieving status reports. We also constructed CGI scripts to support clus­
ter management, directing individual sieving workstations through appropriate
day /night sleep cycles to minimize the impact on their owners. Once volunteers
downloaded and built the GNFSD sieving software daemon, the daemon auto­
matically became a Web client, using the HTTP protocol to GET q-values from,
and POST the resulting relations back to, a CGI script on the Web server.

Three factors combined to make this approach succeed. First, the flexibility
of our NFS implementation allowed even single workstations with 4 megabytes
to perform useful work using small bounds B 1 and B 2 and a small sieve. Second,
we supported anonymous registration-users could contribute their hardware re­
sources to the sieving effort without revealing their identity to anyone other than
the local server administrator. Anonymity is a critical prerequisite for altruism,
in order to protect contributors from having their donated resources attacked or
misused as their reward.

Finally, we recruited other sites to run the CGI script package locally, form­
ing a hierarchical network of RSA130 Web servers. The root server, located at
Cooperating Systems, was fed large consecutive ranges of q's by hand; automated
scripts then managed the fragmentation and distribution of these large tasks to
sieving clients and other Web servers at Boston University and the Northeast­
ern Parallel Architecture Center at Syracuse University. Those remote servers
in turn partitioned the incoming q-ranges into manageable tasks for their local
single-workstation sievers. These NFS sieving processes interacted directly with
CGI scripts on the remote Web server to return their relations and receive a
new task to work on; this automated dialog between NFS sieving clients and
their host Web server allowed sieving to proceed around the clock with minimal
human intervention.

Next Steps. Since we began the Web-based factoring project, Web technologies
have taken another major step forward: the widespread availability of Java as
a tool for donation and coordination of globally distributed resources. Existing
CGI scripts, written in Perl, invented cumbersome protocols for preserving state
between successive CGI invocations. By contrast, a Java-based HTTP server
can offer integrated Java services, route successive service requests to previous
invocations, and dynamically extend its functionality by loading new services
at runtime. CGI performance is vastly improved, since instead of forking a new
process per CGI request and loading the appropriate interpreter executable, the
Java interpreter is already in core and executing when requests for service arrive.
As a result, we are currently working on a new revision of the factoring software
framework, combining Java-based Web servers, extensible applet interfaces, and
NFS sieving code integrated via Java's native method interface.

393

This software framework will provide many additional management services
t~at are ~ommon to globally coordinated volunteer computations, cutting the
time required to ramp up and field future factoring projects. These services will
include hooks to public-key encryption for interserver communication (authenti­
cating tasks, results, and software upgrades), anonymous user database manage­
ment, scalable implementations of general-purpose hierarchical multiserver task
queues, improved fault-tolerance via distributed persistent state, and Web-based
cluster management tools.

Global Implications. We made no formal announcement of the availability of
our early prototype Web software. Nonetheless, by virtual word-of-mouth we at­
tracted the interest of browsers from over 500 different Internet hosts; 20 percent
of those hosts later participated in the sieving stage. These ranged from SLIP­
connected home computers to high-performance corporate workstation clusters,
and literally covered the globe. Browsers from 28 countries, from AT (Austria)
to ZA (South Africa), left their prints on the RSA130 project.

In future large scale factoring efforts, therefore, we predict that Web tech­
nologies will allow us to easily recruit the spare cycles and aggregate memory
of individual computers world-wide. We have already demonstrated that using
the Internet to provide anonymous point-and-click accessibility to large compu­
tational problems is an effective mechanism for tackling problems of communal
significance. Meanwhile, steady algorithmic improvements are making our siev­
ing algorithms more flexible and amenable to global participation. As we have
seen in Section 2, these developments seriously affect the security of 512-bit
RSA-moduli.

Acknowledgments. Acknowledgments are due to to Scott Huddleston and Ore­
gon State University for providing us with 15 candidate pairs of polynomials, and
to the contributors to the World Wide Web sieving project. We especially thank
our partners at Boston University and the Northeastern Parallel Architecture
Center at Syracuse University for their help debugging several prereleases of the
Web software, and for useful feedback. This work was sponsored by the Sticht­
ing Nationale Computerfaciliteiten (National Computing Facilities Foundation,
NCF) for the use of supercomputer facilities, with financial support from the
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Orga­
nization for Scientific Research, NWO). The fourth author's work on this paper

was done at Bellcore.

References

1. D. Atkins, M. Graff, A.K. Lenstra, and P.C. Leyland, THE MAGIC WORDS ARE
SQUEAMISH OSSIFRAGE, Advances in Cryptology, Asiacrypt'94, Lecture Notes
in Comput. Sci. 917 (1995), 265-277.

2. D. J. Bernstein, A. K. Lenstra, A general number field sieve implementation, 103-

126 in: [12]

394

3. J. Buchmann, J. Loho, J. Zayer, An implementation of the general number field
sieve, Advances in Cryptology, Crypto '93, Lecture Notes in Comput. ScL 773
(1994) 159-165.

4. T. Denny, B. Dodson, A. K. Lenstra, M. S. Manasse, On the factorization of RSA-
120, Advances in Cryptology, Crypto '93, Lecture Notes in Comput. Sci. 773 (1994)
166-174.

5. B. Dixon, A. K Lenstra, Factoring integers using SIMD sieves, Advances in Cryp­
tology, Eurocrypt '93, Lecture Notes in Comput. Sci. 765 (1994) 28-39.

6. B. Dodson, A. K. Lenstra, NFS with four large primes: an explosive experiment,
Advances in Cryptology, Crypto '95, Lecture Notes in Comput. Sci. 963 (1995)
372-385.

7. R. M. Elkenbracht-Huizing, An implementation of the number field sieve, Technical
Report NM-R9511, Centrum voor Wiskunde en Informatica, Amsterdam, 1995; to
appear in Experimental Mathematics.

8. R. M. Elkenbracht-Huizing, A multiple polynomial general number field sieve, Pro­
ceedings ANTS II, to appear.

9. M. Gardner, Mathematical games, A new kind of cipher that would take millions
of years to break, Scientific American, August 1977, 120-124.

10. R. Golliver, A. K. Lenstra, K. McCurley, Lattice sieving and trial division, ANTS
'94, Lecture Notes in Comput. Sci. 877 (1994) 18-27.

11. A. K. Lenstra, H. W. Lenstra, Jr., Algorithms in number theory, Chapter 12 in:
J. van Leeuwen (ed.), Handbook of theoretical computer science, Volume A, Algo­
rithms and complexity, Elsevier, Amsterdam, 1990.

12. A. K. Lenstra, H. W. Lenstra, Jr. (eds), The development of the number field sieve,
Lecture Notes in Math. 1554, Springer-Verlag, Berlin, 1993.

13. A. K. Lenstra, M. S. Manasse, Factoring by electronic mail, Advances in Cryptol­
ogy, Eurocrypt '89, Lecture Notes in Comput. Sci. 434 (1990} 355-371.

14. A. K. Lenstra, M. S. Manasse, Factoring with two large primes, Advances in Cryp­
tology, Eurocrypt '90, Lecture Notes in Comput. Sci. 473 (1991} 72-82; Math.
Comp., 63 (1994) 785-798.

15. P. L. Montgomery, Square roots of products of algebraic numbers, Proceedings
of Symposia in Applied Mathematics, Mathematics of Computation 1943-1993,
Vancouver, 1993, Walter Gautschi, ed.

16. P. L. Montgomery, A block Lanczos algorithm for finding dependencies over GF(2),
Advances in Cryptology, Eurocrypt'95, Lecture Notes in Comput. Sci. 921 (1995}
106-120.

17. J.M. Pollard, The lattice sieve, 43-49 in: [12].
18. RSA Data Security Corporation Inc., sci.crypt, May 18, 1991; information available

by sending electronic mail to challenge-rsa-listlDrsa. com.

