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Hermansky–Pudlak syndrome (HPS) is a genetic disorder characterized by oculocutaneous albinism, bleeding
tendency and susceptibility to pulmonary fibrosis. No curative therapy is available. Genetic correction directed
to the lungs, bone marrow and/or gastro-intestinal tract might provide alternative forms of treatment for the
diseases multi-systemic complications. We demonstrate that lentiviral-mediated gene transfer corrects the ex-
pression and function of the HPS1 gene in patient dermal melanocytes, which opens the way to development
of gene therapy for HPS.

Published by Elsevier Inc.
1. Introduction

Hermansky–Pudlak syndrome (HPS) is an autosomal recessive
disorder characterized by defective biogenesis of lysosome-related
organelles (LROs) [1,2]. Nine genetic HPS subtypes have been defined
with clinical manifestations that include hypopigmentation, bleeding
diathesis, pulmonary fibrosis, granulomatous colitis and neutropenia.
HPS-associated pulmonary fibrosis (HPS-PF) remains the most serious
complication for patients affected with the HPS-1, -2 and -4 types of
the disease [3]. Several lines of evidence suggest that alveolar type II
pneumocytes (ATII) play a significant role in the susceptibility of HPS
patients to PF [4,5]. The prognosis of HPS-PF is extremely poor and,
currently, the only treatment is lung transplantation. Thus, the develop-
ment of alternative forms of treatment for HPS-PF remains a high
priority.

Genes mutated in HPS encode subunits of the biogenesis of
lysosome-related organelles complexes (BLOCs) which participate in
intracellular protein trafficking and vesicle biosynthesis. The HPS1/HPS4
protein complex, BLOC-3, functions as a Rab32 and Rab38 (Rab32/38)
guanine nucleotide exchange factor [6]. In melanocytes, activated
Rab32/38 is important for efficient transport of tyrosinase and tyrosinase
related protein 1 (TYRP1) from early endosomes to melanosomes and
d Allergy, University Hospital of
ne, Switzerland.
likely provides the pathophysiologic basis of HPS-1 complications. In
ATII cells, Rab38 contributes to maintaining lamellar body morphology
and surfactant homeostasis [7,8].

Thus, correcting BLOC-3 function in ATII cells by HPS1 gene transfer
may be an effective therapy for treating HPS1-PF. To begin to explore
gene therapy strategies for HPS, we studied the effects of lentiviral
(LV)-mediated gene correction in HPS-1 human dermal melanocytes
(HDM) as an initial feasibility model.

2. Materials and methods

2.1. Cells

All HPS patient cells used in this studywere homozygous for a 16-bp
duplication in exon 15 of the HPS1 gene (c.1472_1487dup16) and
cultured as previously described [9]. Patients were enrolled in protocol
NCT00001456, “Clinical and Basic Investigations Into Hermansky–
Pudlak Syndrome”, approved by the NHGRI Institutional Review Board,
and gavewritten informed consent. All assays described belowwere per-
formed in triplicate.

2.2. LV construction, production and transduction

Weprepared two LV constructs: the LV-HPS1 therapeutic vector, ex-
pressing both the humanHPS1 cDNA (GeneCopoeia, Germantown,MD)
and the green fluorescent protein (GFP) reporter gene (Addgene Inc.,
Cambridge, MA) under the control of ubiquitously acting chromatin
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opening element (UCOE), and the LV-GFP control vector that expressed
only GFP (Fig. 1A). Viral particles were produced as previously
described [10]. HPS-1 HDM were exposed to LV-HPS1 or LV-GFP viral
particles for 2 h at a multiplicity of infection of 10.
2.3. Quantitative real-time PCR

Genome-integrated vector sequenceswere detected using previous-
ly described methods [11] and by quantitative PCR analysis (using uni-
versal probe #67: 5′-TGCTGGAG-3′ (Roche, Indianapolis, IN) and
primers: 5′-CCATGCCGAGAGTGATCC-3′ (forward) and 5′-GAAGCGCG
ATCACATGGT-3′ (reverse)).
A

C HPS-1 
NT 

HPS-1 
LV-GFP 

HPS-1 
LV-HPS1 

Ctr
LV-GF

HPS-1  
LV-GFP 

E TGN46 

HPS-1  
NT 

HPS-1  
LV-HPS1 

Ctr
NT 

LV-GFP 

UCOE HPS1 IRES GFP 

GFP 

LV-HPS1 

HPS4 

HPS1 

-actin 

Ctr
NT

HPS-1 
NT

HPS-4 
NT

HPS-1 
LV-GFP

HPS-1 
LV-HPS1

B 

D

* 

* 

* 
* 

* 

Fig. 1. LV-HPS1 transduction corrects BLOC-3 function in HPS-1 human dermal melanocytes. (A)
tously acting chromatin opening element; HPS1, Hermansky-Pudlak syndrome 1 open reading
GFP, enhanced green fluorescent protein open reading frame cDNA; SIN, self-inactivating. (B) Im
(HPS-1) and HPS-4 fibroblasts (HPS-4). The cells were either non-transduced (NT) or transduced
in HPS-1 melanocytes transduced with LV-HPS1. (C) Effects of gene transfer on HPS-1 melanocyt
ducedwith LV-GFP or LV-HPS1 and cultured for 15 days. Cell pellets after 15 days of culturing show
BLOC-3 function. (D) Fluorescent (to visualize GFP expression in transduced cells, green) and brig
melanocytes transduced with LV-GFP or LV-HPS1. LV-GFP transduced HPS-1 cells lacked pigment
tation (arrows) with a similar intensity and distribution as in control cells. (E) Corrected BLOC-3
nosomes. BLOC-3 function is evaluated by immunofluorescence analysis of TYRP1 expression a
Golgi network (TGN, green) is visualized by a sheep anti-TGN antibody (AbD Serotec). TYRP1 in
distribution into the dendrites (arrowheads). HPS-1 melanocytes (HPS-1 NT) showed TYRP1 loca
creased (arrowheads), suggesting a BLOC-3 defect. Transduction of HPS-1 cells with LV-HPS1 incr
rection of BLOC-3 function. Transduction of HPS-1 cells with LV-GFP did not correct TYRP1 dist
cropped and enlarged (right panels) to better visualize the perinuclear dendritic regions of the cell
on a Zeiss LSM510 META confocal microscope using 20× (Figure D) or 40× (Figure E) objective.
2.4. Western blotting

Protein cell lysates were immunoblotted using anti-HPS1 and anti-
HPS4 polyclonal antibodies (Proteintech Group, Inc., Chicago, IL) and
anti-β-actin monoclonal antibody as loading control. Western blots
were quantified using the ImageJ 1.32 software (National Institutes of
Health, MD) after densitometric scanning of the films. The intensity of
HPS1 and HPS4 protein was normalized to that of β-actin.

2.5. Immunofluorescence microscopy

Immunofluorescence microscopy was performed as described [9],
using a mouse monoclonal antibody against TYRP1 obtained from
HPS-1  
LV-GFP 

HPS-1  
LV-HPS1 P 

TYRP1 Merge 

50 m 50 m 50 m 

10µm20µm

* 

* 

* 

* 

* * * 

Schematic representation of the lentiviral vectors. LTR, long terminal repeat; UCOE, ubiqui-
frame cDNA (GenBank accession number NM_000195); IRES, internal ribosome entry site;
munoblots of cell lysates from healthy donor (Ctr) and HPS-1 human dermal melanocytes
with LV-GFP or LV-HPS1. The results show the restoration of both HPS1 and HPS4 proteins

e macroscopic pigmentation. HPS-1 melanocytes were either non-transduced (NT) or trans-
ed significantly increased pigmentation in LV-HPS1-transduced cells, indicating correction of
htfield (to visualize pigmentation, black) images of healthy control (Ctr) and HPS-1 patient
ation (arrowheads), while HPS-1 cells transduced with LV-HPS1 showed increased pigmen-
function results in trafficking of the melanogenic enzyme TYRP1 to early endosomes/mela-
nd localization (red, visualized by a MEL5 mouse anti-TYRP1 antibody; Biolegend). Trans-
Ctr melanocytes (Ctr NT) is localized in the TGN area, as well as in an endosomal, punctate
lization to the TGN, but the dendritic endosomal TYRP1 localization appeared markedly de-
eased dendritic endosomal expression of TYRP1 (arrowheads), indicating improvement/cor-
ribution and/or BLOC-3 function. The perinuclear regions of selected cells (asterisks) were
s. All cell imageswere taken at the same intensity andmagnification settings per experiment
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Biolegend (Dedham, MA, USA), a sheep polyclonal antibody against
TGN46 from AbD Serotec (Raleigh, NC, USA), and the DAPI nuclear
stain (Vector Laboratories, Burlingame, CA, USA). All imaging was per-
formed on a Zeiss 510 META confocal laser-scanning microscope (Carl
Zeiss, Thornwood, NY, USA).
3. Results and discussion

3.1. Efficacy of HPS1 expression

Fluorescence-activated cell sorting (FACS) analysis and quantitative
real-time PCR were performed to evaluate efficiency of expression of
the lentiviral constructs 15 days after transduction. FACS analysis
showed that lentiviral gene transfer in HPS-1 HDM resulted in 98.8%
(LV-GFP) and 50.0% (LV-HPS1) GFP-positive cell populations (data not
shown). Quantitative PCR analysis showed that cells transduced with
the LV-HPS1 and LV-GFP vectors carried 4.3-13.3 and 28.9-30.5 vector
copies per cell, respectively (data not shown).

By western blot analysis, the HPS1 protein (~79 kDa) was detected
in lanes containing extracts from non-transduced (NT) HDM from a
healthy donor (Ctr) and in LV-HPS1-transduced HPS-1 HDM, while
it was barely detectable in extracts from non-transduced (NT) and
LV-GFP-transduced HPS-1 HDM (Fig. 1B). Quantification of HPS1
protein expression by ImageJ 1.32 software showed that HPS1 pro-
tein expression in LV-HPS1 transduced HPS-1 HDM was 52.2% of
the level expressed in HDM from a healthy donor.
3.2. Assessing the restoration of BLOC-3 function

Because LV-HPS1 transduction did not restore HPS1 protein
expression to normal levels in HPS-1 HDM, it was important to ob-
tain evidence of the functional effects of the gene correction. HPS1
and HPS4 proteins are stable within BLOC-3, but when either is ab-
sent the other is either absent or greatly reduced [12]. We therefore
tested the stability of the BLOC-3 complex by evaluating HPS4 protein
expression, which was significantly reduced in NT and LV-GFP-
transduced HPS-1 HDM. Importantly, however, LV-HPS1-transduced
HPS-1 HDM showed HPS4 protein increased to 89.3% of the level
expressed in control HDM (Fig. 1B). Therefore, in addition to restoring
HPS1 expression, LV-mediated HPS1 gene transfer resulted in the cor-
rection of BLOC-3 formation, as indicated by stabilization of HPS4 ex-
pression in HPS-1 HDM.

To further determine whether BLOC-3 function was restored in LV-
HPS1-transduced HPS-1 HDM, we assessed melanocyte pigmentation.
Fifteen days after transduction, pelleted LV-HPS1-transduced HPS-1
HDM showed significantly increased pigmentation, compared to NT
or LV-GFP-transduced HPS1 HDM (Fig. 1C). Similarly, confocal micros-
copy showed increased pigmentation in LV-HPS1-transduced HPS-1
HDM (arrows), while LV-GFP transduced HPS-1 HDM (arrow heads)
lacked pigmentation (Fig. 1D).

Lastly, we assessed intracellular localization of the melanogenic
enzyme TYRP1 by immunofluorescence in HPS-1 HDM transduced
with LV-GFP or LV-HPS1 (Fig. 1E). In control cells (Ctr NT), TYRP1 was
localized to the Golgi region as well as to endosomes (likely early
stage melanosomes) outside the Golgi region (arrow heads). In HPS-1
HDM (HPS-1 NT), however, TYRP1 remained mostly in the trans-Golgi
region and was markedly decreased in the endosomes in the dendritic
regions (arrow heads). In contrast, in LV-HPS1-transduced HPS-1 HDM
(HPS-1 LV-HPS1), TYRP1 appeared to regain dendritic endosomal local-
ization, similar to control cells (Fig. 1E).

These data indicate that restoration of HPS1 protein expression by
LV-HPS1 transduction in HPS-1 HDM corrected BLOC-3 function, likely
through activation of Rab32/38 and correction of endosomal transport
of TYRP1, leading to restored melanin production.
4. Conclusion

Our results show that lentiviral-mediated gene transfer resulted in
effective HPS1 gene expression in HPS-1 HDM, restoration of BLOC-3
function, and correction of pigmentation in these cells.

Because viral vector-mediated gene transfer has resulted in serious
adverse events of insertional oncogenesis in clinical trials that used con-
structs based on murine gamma-retroviruses [13], we decided to use a
lentiviral-based gene transfer vector in the current study, as a safer al-
ternative for potential future clinical use [14]. Envisionable gene thera-
py approaches thatwould benefit HPSwill have to target the lung, a task
that has proven challenging. However, significant progress has been
made in recent years with the development of lentiviral vectors that
efficiently transduce lung tissue [15].

In this context, our in vitro studies represent a promising first step to-
ward the development of in vivo gene therapy strategies for Hermansky–
Pudlak syndrome.
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