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The Number Field Sieve (NFS) is the asymptotically fastest 
known factoring algorithm for large integers. This article de
scribes an implementation of the NFS, including the choice of 
two quadratic polynomials, both classical sieving and a special 
form of lattice sieving (line sieving), the block Lanczos method 
and a new square root algorithm. Finally some data on factor
izations obtained with this implementation are listed, including 
the record factorization of 121s1 - 1. 

1. INTRODUCTION 

The Number Field Sieve {NFS), introduced in 1988 
[Pollard 1993a], is the asymptotically fastest known 
algorithm for factoring integers. Two forms of the 
NFS have been considered: the Special NFS, or 
SNFS, tailored especially to integers of the form 
n = c1rt + c2su, and the General NFS, or GNFS, 
applicable to arbitrary numbers. The NFS factors 
integers n in heuristic time 

exp((c + o(l))(logn)113(log logn)213 ) 

as n -+ oo, where c = ( ~) 113 ;::::: 1.5 for the SNFS 

and c = (\1) 113 ;::::: 1.9 for the GNFS [Buhler et al. 
1993]. These expressions should be compared with 
the time 

exp( (1 + o(l) )(logn)112(log log n) 112) 

taken by the Multiple Polynomial Quadratic Sieve, 
or MPQS [Pomerance 1985], still the best general
purpose factoring algorithm for integers with less 
than approximately 105 digits. 

We describe here several experiments carried out 
with an implementation of the NFS written by J. 
Buhler, R. M. Elkenbracht-Huizing, P. L. Mont
gomery, R. Robson and R. Ruby. It has been used, 
among others, for the record SNFS factorization 
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of (12151 - 1)/11, a number of 162 decimal digits, 

and a GNFS factorization of a 107-digit cofactor of 

5223+1. We start with a description of the NFS and 

an outline of the implementation, then discuss in 

more detail several aspects of the implementation, 

and finally state the results of the factorization ex

periments. Detailed descriptions of the NFS can be 

found in [Lenstra et al. 1993b; Buhler et al. 1993]. 

2. DESCRIPTION Of THE NFS 

Let n be the odd number to be factored. It is easy 

to check whether n is a prime number or a prime 

power [Lenstra et al. 1993c, § 2.5], and we assume 
that it is neither. Like MPQS, the NFS tries to 

find a solution of the equation v 2 = w2 mod n. For 
at least half of the pairs ( v mod n, w mod n) with 

v2 = w2 mod n and v and w relatively prime to n, 
the greatest common divisor of n and v - w gives 
a nontrivial factor of n. 

To construct v and w we first choose two poly
nomials 

!1(x) = C1,d1Xd1 + C1,d,-1Xd,-l + ... + C1,o 

f2(x) = C2,d2Xd2 + C2,d2-1Xd,-l + ... + C2,o 

over Z, with Ji f ±f2 , both irreducible over Zand 

having content cont Ji := gcd( c;,d,, ... , C;,o) equal 
to l; we also choose an integer m that is a common 

root modulo n of f 1 and f 2 . In our implementa
tion this is the only step in which the SNFS and 

the GNFS differ: in the SNFS we use the special 
form of n to pick these polynomials by hand. One 

polynomial will have very small coefficients com
pared to the coefficients of the polynomials we will 

use with the GNFS, where we search for a pair 

of polynomials with help of the computer. This 

makes SNFS faster than GNFS [Buhler et al. 1993, 

§ 1 J. See Section 5 for a detailed description of the 
selection of the polynomials. 

Let a;, for i = 1, 2, be a root of f;(x) in <C. 
Let Qn denote the ring of rational numbers with 
denominator coprime to n. We want to find a 

nonempty set S of pairs (a, b) of coprime integers 

such that both ITs (a - bai) and I1s (a - ba2 ) are 

squares-,82 and 12, say-in Qn[a1] and Qn[a2], 
respectively. Applying to ,82 and / 2 the two nat

ural ring homomorphisms c.p; : Qn [a;] -+ Z/n'll 

determined by Soi (Cl';) = m mod n gives 'P1 (/J2) = 
ip2(t2) modn. This yields <p1(,8) 2 = <,02(/) 2 modn. 

When <p1 (,8) and <p2 (I) are relatively prime to n, 

calculating gcd( n, l/Ji (,8) - cp2 ( /)) will yield a non
trivial factor of n in at least half the cases. 

For Tis (a-bai) to be a square in Qn [ai], its norm 

N(Tis(a-ba;)) must be a square in Q. Denote by 

Fi(x,y) = yd'f;(x/y) E 'll[x,y] the homogeneous 

form of f;(x). From N(a - ba;) = F;(a, b)/c;,d, 
we can deduce that if the cardinality of the set S 

is even and if Tis F;(a, b) is a square in Z, then 

N(f1 8 (a - ba;)) is a square in Q. 
The algorithm searches for a pair (a, b) of co

prime integers such that both integers Fi (a, b) fac

tor completely over the prime numbers below some 

user-determined bounds B;. We call such integers 

F;(a, b) smooth and such (a, b)-pairs relations. For 

a relation ( ai, bi) we can write 

F (a· b·) = IT pe,(j,p) 1 Jl J , 

pEX1 
(2.1) 

F2(aj, bi)= II pe,(j,p), 

pEX2 

where e;(j,p) E N, for i = 1, 2, and where X1 and 

X2 contain -1 and the prime numbers below B1 
and B2 , respectively. 

In order for ITs F;(a, b) to be a square in 'll, every 
exponent Le; e;(j,p) in 

II F;(aj, bJ = II pL-s e;(j,p) 

(a;,b;)ES pEX; 

should be even. Let v ( aJ, bi) be a vector of length 

1 + IX1I + IX2I, constructed as follows: its first 

entry is 1 and the rest of v ( ai, bi) is filled with 

all exponents e1 (j,p) and e2 (j,p) modulo 2, in an 

order which is fixed for all (ai, bi)· If Sis a subset of 

the relations such that L(a,b)ES v(a, b) = 0 mod 2, 

then the cardinality of S is even and Ls e;(j,p) = 
0 mod 2 for i = 1, 2 and all p E Xi; hence both 
N(I18 (a - ba;)) are squares in Q. 
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Unfortunately N(Tis (a-ba;)) being a square in 
Q is not sufficient for f1 3 (a - bai) to be a square 
in Qn [o:J By looking at what kind of p divides 
F;(a, b), we will almost overcome this problem. For 
each prime number p we define the set 

::R;(p) = {(r1: r2) E P 1(JFP) I Fi(r1,r2) = 0 modp}, 
(2.2) 

where P 1 (1Fp) denotes the projective line over JFP. 
For a and b coprime, the integer F; (a, b) is divisible 
by a prime number p if and only if (a mod p : b mod 

p) E ::R; (p). Therefore the set ::R; (p) is partitioning 
all (a, b)-pairs for whichp divides F;(a, b) according 
to (a mod p : b mod p). 

Next, for C E N, let ::f;(C) be the set of pairs 
(p, (r1: r2)), where p is a prime less than C and 

(r1: r2) E ::R;(p). Heuristically, /:T;(C)/ is approxi
mately the number of primes below C [Lang 1970, 
Chapter VIII, § 4]. :11 (B1 ) and :12 (B2 ) are called 
the factor bases. We now can write (2.1) as 

II 
(p,(r1 :r2 ))E'.J,(B;) 

for i = 1, 2, where e;(j,p, ri, r2) = e;(j,p) if 

(aJ mod p: bi mod p) = (r1: r2) 

and 0 otherwise. 
In order for f1 3 (a-ba;) to be a square in «J!n[ai], 

every exponent 2:::: s e; (j, p, r 1 , r2 ) in 

II 
(a;,b;)ES 

should be even. Let v(aJ, bJ) be a vector oflength 

1 + l:11(Bi)/ + /:12(B2 )/ containing 1 and the values 
of ei(j,p,ri,r2 ) mod 2 and e2(j,p,r1,r2) mod 2, in 
an order that is fixed for all relations ( ai, bj). A 
nonempty subset S of relations such that 

L v (a, b) = 0 mod 2 
s 

is almost sufficient to ensure that Ils (a - bai) be a 
square in «J!n [ai] for i = 1, 2 [Buhler et al. 1993, 
§ 12.7]. That it is not totally sufficient is only 
partly caused by the fact that we only forced the 

product fis / F; (a, b) / to be a square in Z. We can 
see that it is not totally sufficient from the follow
ing example: In the field Q( v'3) generated by a 
root of the polynomial f(x) = x2 - 3, the element 
2 + v'3 has norm F(2, -1) = 1. So all exponents 
ei(j,p,r1,r2) and e2(j,p,r1,r2) will be zero. Fur
thermore v(2, -1) + v(l, 0) = 0 mod 2. But the 
square root of 2 + v'3 is ( V6 + .J2)/2, which is not 
an element of Q( v'3). 

The small gap between being almost a square 
and being practically certainly a square is over
come by using quadratic characters, following an 
idea of Adleman [1991]. For S a set consisting of 
pairs (a, b) of co prime integers, let Tis (a - bai) be a 
square in Qn [ o:i], and let q be an odd prime number 
not dividing c1,d1 c2,d2 • If (s1: s2) E '.R.;(q) is such 
that JJ(s1s2 1 mod q) =I= 0 mod q and (a mod q 
bmodq) =J (s1 : s2) for all (a,b) ES, then 

II (a -b (s18:1 mod q)) = 1 (2.4) 

(a,b)ES 

where (;];) denotes the Legendre symbol [Buhler et 
al. 1993, § 8, § 12.7]. We use this by taking for each 
polynomial several primes q larger than Bi and not 
dividing ci,d,, together with an element ( s1 : Sz) E 

::Ri(q) such that JJ(s1s21 mod q) =I= 0 mod q. Since 
q > B; we have (a mod q: b mod q) =J (81: 82) for 
all relations (a, b). Append to the vector v(a, b) for 
all pairs (q, (s1: 82)) a 0 if 

(a-b(s 1stmodq)) =l 

and a 1 otherwise. Now a nonempty subset S 
of all relations such that Z::::s v(a, b) = 0 mod 2 
guarantees that (2.4) holds for all chosen primes 
q together with their elements (s1: s2) E ::R;(q). 
Taking enough quadratic characters - we took 32 

per polynomial - makes it practically certain that 
both Tis (a - ba;) are squares in «J!n [o:;]. The coun
terexample given earlier could have been caught 
with the use of quadratic characters: take q = 11 
and (s 1 : s2 ) = (5, 1) E ::R(ll). The Legendre sym
bol becomes (2~5 ), which is -1. 
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If Q is the total number of quadratic charac
ters used, then a nonempty subset S such that 
:Es v(a, b) = 0 mod 2 can always be found if the 
number of relations exceeds 

3. OUTLINE OF THE IMPLEMENTATION 

The implementation can be divided into five stages. 
In the first stage we select the polynomials f1(x) 
and / 2(x) in .Z[x], and the integer m such that 
m is a common root of j 1(x) and / 2 (x) modulo 
n. We also choose the sieving region- that is, 
the collection of (a, b)-pairs for which both Fi(a, b) 
are checked for smoothness-and, for each poly
nomial, a factor base bound Bi. 

The second stage, the sieving in which the re
lations are found, is the most time-consuming. In 
this implementation a relation is a pair (a, b) from 
the sieving region such that both Fi (a, b) factor 
completely over the primes below Bi, except for at 
most two large prime numbers, which should be 
between Bi and a large prime bound Li. By using 
lattice sieving [Pollard 1993b] - a special form of 
which will be desribed in Section 6 - one of the two 
integers Fi (a, b) is allowed to have three primes be
tween Bi and Li. The product in (2.3) is taken over 
:t(Li), and the vectors v(a, b) have to be adapted 
accordingly. 

This is followed by a filtering stage with the pur
pose of reducing the amount of data. Here some re
lations are eliminated and others are grouped into 
relation-sets. 

In the fourth stage, we construct a matrix by 
taking the vectors v (a, b) and the vectors 

L v(a,b) 
(c,b)EV 

for all remaining relations and relation-sets V as 
columns. Finding a nonempty set S such that 

L v (a, b) = 0 mod 2 
g 

is the same as calculating a nontrivial vector from 
the null space of this matrix over lF 2 • For huge 
sparse matrices the best known methods are iter
ative ones, such as the block Lanczos algorithm 
[Montgomery 1995]. The output of this stage is a 
subset S of the relations such that both Ils(a-bo:i) 
and Ils(a - bo:2) are squares {32 and 'Y2 in 'Gn[o:1] 

and 'Gn [o:2], respectively. 
The final stage consists of extracting the square 

roots f3 and 'Y. This is done by a new algorithm, 
developed by Montgomery [1994] and also itera
tive. Successive approximations are found, leaving 
over "smaller" remainders of which we have to ex
tract the square root. If the remainder is small 
enough we use a conventional method. Finally we 
apply the homomorphisms <.p1 and cp2 to the square 
roots f3 and 'Y, respectively, and calculate the gcd 
of n and cp1(f3) - cp2 ('y), which will split n into two 
nontrivial factors in at least half of the cases. 

4. FREE RELATIONS 

Denote the order of the Galois group of f 1 ( x) '2 ( x) 
by g. For approximately 1/ g of the primes q < 
min(Li, L 2), both polynomials Fi(x, y) split into di 
linear factors modulo q [Frobenius 1896, § 2, The
orem 1; Neukirch 1992, p. 566]: 

d; 

Fi(x, y) = l!i,d, IT (r~ilx - r~i>y) mod q (4.1) 

j=l 

If such a prime q does not divide the discriminants 
of / 1 (x) or j 2 (x) (and therefore both polynomials 
Fi ( x, y) split into di different linear factors modulo 
q) and if q does not divide c1,d1 • c2,d2 , we call q a 
free prime. This terminology comes from the fact 
that we can select such primes that are smaller 
than min(B1, B2 ) without extra effort when cal
culating the factor bases :ri(Bi)· They are said 
to give rise to free relations because we now re
quire (TipET p) (TI(c,b)ES (a- bai)) to be a square in 
'Gn[ai], for i = 1, 2, where 'J is a suitably chosen 
subset of the set of free primes. With N(p) =pd•, 
we have 
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N((rrP)( TI (a-bai))) 
pE'T (a,b)ES 

= ( rr Pd') ( n F;(a, b)), 
pE'T (a,b)ES C;,d, 

which represents a square in Q if ISI is even and 

(TipE'T Pd') (II(a,b)ES F; (a, b)) is a square in Z. As 
we partitioned the primes p dividing TI(a,b)ESF;(a, b) 
according to the roots (a mod p : b mod p) E '.R; (p), 
we consider pd• as the product of one factor p for 
every root ( r 1 : r2) E '.R; (p). We associate with ev
ery free prime p < min(Li, L 2 ) a vector v(p) of 
length 1 + l:Fi(Li)I + l'.r2(L2)I + Q, which contains 
a one for every (p, (r~i): r~i))) occurring in (4.1) for 
both polynomials, and for every quadratic charac
ter (q, (s1 : s2 )) for which (E) = -1. The rest is 

q 

filled with zeros. We will look for 'J and S such 

that l:vE'Tv(p) + l:(a,b)ES v(a, b) = 0 mod 2. 

5. CHOICE OF THE POLYNOMIALS 

The conjectured running time for the application 
of the SNFS to a number of the form n = c1rt+c2 s"' 
depends on the size of n. If only small factors of 
n are known, the SNFS algorithm is certainly the 
best one to use. If already a substantial nonalge
braic factor of n is known, the GNFS or the MPQS 
might be faster. 

Using the SNFS for a factor n of an integer 
C1rt + c2s"' with gcd(c1r,c2s) = 1, we pick the two 
possibly nonmonic polynomials by hand. Select a 
small positive integer di - usually 4 or 5- which 
will be the degree of f i ( x). Write t = d1 t' + t" 
and u = d1u' + u" with t", u" E {O, 1, ... , di - 1 }. 
In practice fi(x) := c2s""' xd1 + cirt" is irreducible 
over Z, and f1(x), j 2(x) := rt'x - s"'', and m := 

s"'' r-t' mod n satisfy the requirements mentioned 
in Section 2. If f 1 ( x) is not irreducible, a nontriv
ial factor of f 1 is likely to give rise to a nontrivial 
factor of n, and otherwise f 1 can be replaced by 
a suitable factor. (This is also applicable in the 
case of the GNFS.) An algorithm to test whether 
a polynomial is irreducible and to factor it if it is 
not can be found in [Lenstra et al. 1982]. If we 

encounter a polynomial f;(x) with cont f;(x) f:= l, 
we can divide all coefficients of f; ( x) by the con
tent, assuming that cont f;(x) and n are relatively 
prime. Using the SNFS we sometimes find better 
pairs of polynomials, together with a value for m, 
by trying to factor a multiple of n. Examples can 
be found in the last section of this article. 

Using the GNFS one can find two polynomials 
by the base m method. Select a small positive in
teger d1 -usually 4 or 5-which will again be the 
degree of fi(x). Set m = ln1/diJ and write n in 
base mas 

with 0:::; c; < m. Now 

and f2(x) = x - m satisfy the requirements. This 
method implies cd1 = 1 [Buhler et al. 1993, § 3]. 
In [Buhler et al. 1993, § 12.2] one can find slightly 
better variants of this method, resulting in a lin
ear and a higher-degree polynomial with leading 
coefficients possibly larger than one and possibly 
negative coefficients. For these variants the poly
nomial coefficients are eJ(n1/(d1+1l). 

The task is to find suitable polynomials f i and 
/2, factor base bounds B1 , B2, large prime bounds 
Li, L 2, and a sieving region. For a good choice 
four characteristics of the polynomials should be 
taken into account. First, the maximal values of 
I Fi (a, b) I should be small, making them more likely 
to be smooth over the primes below B;. Secondly, 
when a polynomial has many real roots, more ra
tios a/b will be near a root and more values Fi(a, b) 
are expected to be small. As a refinement of this 
characteristic we can look at the absolute value of 
the real roots. A polynomial having a real root 
near max !al/ max lbl is a good choice. The impor
tance of this characteristic is made clear in Fig
ure 1. Thirdly, polynomials that have many roots 
modulo (preferably different) small primes are pre
ferred over ones that do not. This enlarges the 
probability that F; (a, b) is small after dividing it by 
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these small prime numbers, making it more likely 
to be smooth over the primes below Bi. Finally, it 
is better to choose polynomials for which the order 
of the Galois group of f 1 ( x) f 2 ( x) is small, since we 
saw in the previous section that they provide more 
free relations. With these criteria in mind we se
lect the pair of polynomials which is expected to 
be the best. 

FIGURE 1. Number of relations found for 60000 
a-values and 8625 b-values for the factorization of 
a 119-digit factor of 3319 1 (see Section 10 for 
details). One polynomial is fi(x) = x5 +x4 -4x3 -

3x2 + 3x + 1, with 5 real roots. The five ridges 
indicate a higher yield for pairs (a, b) with a/b near 
a root. 

We experimented with a choice of two quadratic 
polynomials selected according to ideas of Mont
gomery [Buhler et al. 1994]. He observed that 
!1(x) = C1,2X2 + C1,1X + C1,o and f2(x) = C2,2X2 + 
c2,1X + c2,o E Z[x] have a common root m modulo 
n if and only ifthe vectors a= (c1,o, c1,1, c1,2f and 
b = (c2,o, c2,1, c2,2)T are orthogonal to (1, m, m2f 
over Z/nZ using the standard inner product. Sup
pose f1 ( x) and !2( x) are irreducible over Z, have 
content 1, and do not satisfy f 1(x) = ±f2(x). As 
will be explained further on, we can find in prac
tice a and b of which the coefficients are appoxi
mately <'.:J(n114 ), so the space orthogonal to a and 
b has rank 1 (both over Z and over Z/nZ). If 

c = a x b (cross product), then c must be a multi
ple of (1,m,m2)T over Z/n7l. The fact that f 1(x) 
and f 2 (x) are not multiples of each other ensures 
that c is not the zero vector. If c = (c0 ,c1,c2)T, 
then c0 ,c1 ,c2 is a geometric progression in Z/n7l. 
It is not a geometric progression over Z, since then 
f 1 (x) and f2(x) would have a common factor x-m 
over Z. 

Montgomery's algorithm for finding f1(x) and 
f2(x) reverses this construction and starts with a 
vector c = ( c0 , c1 , c2)T E 'Z.3, where eo, C1, c2 is age
ometric progression with ratio m over Z/n7l, but 
not over Z. The vector c can be constructed as 
follows: for p prime such that p < fo and n a 
quadratic residue modulo p, choose c1 such that 
c~ = n mod p and lei - n 1121 ::::; p/2. The elements 
of c = (p, ci, ( ci-n) / p) T form a geometric progres
sion with ratio cif p over Z/n'll.., not over Z. Fur
thermore ci = <'.:l(n112 ) (i=0,1,2). Take s E Z/pZ 
such that c1s = 1 modp. With c2 = (ci - n)/p, 
the vectors 

are both orthogonal to c. From a' x b' = -c and 
gcd(c0 , c1, c2 ) = 1 we deduce that a' and b' span 
the sublattice of Z3 orthogonal to c. Denote by 
(a, b) the inner product of a and b, and remember 
that a (a, b)/(a, a) is the projection of bona. By 
reducing the basis {a', b'}, one can find "small" 
vectors a and b with {a, b} a basis of the sublattice 
of 'll} orthogonal to c, such that 

I (a, b) I 1 d 
-(-) :::; 2 an a,a l

(a,b)I<.!. 
(b,b) - 2 • 

The angle 0 between these vectors will be between 
60° and 120°. Since the surface of the parallelo
gram spanned by a and bis both equal to Ila x bJI 
and llall · llbll sine, we have 

llall · llbll = Jt=1L ::::; 2llcll = <'.:J(llcll) = <'.:J(n112 ). 
sme V3 

(5.1) 
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In practice both llall and llbll are (')(n 114 ). For dif
ferent values of p we will get a different pair of 
polynomials. The program findquad tries to find 
two polynomials each having two real roots, many 
roots modulo small primes, and such that the in
tegral of I;i=1,2 log IFi(x, y)J is small, where (x, y) 
runs through the sieving region for (a, b). 

When using line sieving (a special form of lat
tice sieving, explained in Section 6), we like to 
use a large range of a-values, say lal < M and 
only b = 1. To try to induce F;(a, 1) = c;,2a 2 + 
c;,1 a + C;,o to be smooth over the prime numbers 
below B;, we would prefer ci,z = <:J(n114 /M), c;, 1 = 
t:.:J(n114 ), and c;,o = <9(n114 M) rather than all of 
them being ('.)(n114 ). We achieve this by first choos
ing Co = p = C'J( fo/M), whence c1 = ('.)( y'n) 
and c2 = ('.)( .jnM). The resulting coefficients of 
a'= (a~,ai,a~) and b' = (b~,bi,b~) have approx
imately the right ratio. To keep this ratio while 
reducing the basis, we reduce the vectors a" = 
(a~,aiM,a~M2 ) and b" = (b~,biM,b;M2 ) instead. 
Note that a" x b" = Mc" with c" = ( c0M 2, c1 M, c2 ), 

which is still a geometric progression with ratio 
ci/pM over Z/nZ, not over Z. Using (5.1) with 
c = Mc" we find that the resulting vectors a = 
(ao, a1M, a2M2 ) and b = (b0 , b1M, bzM2 ) will be 
both ('.)(n114M). Using f 1 (x) = a2x 2 +a1x+ao and 
f 2 ( x) = b2x2 + b1 x + b0 results in the desired orders 
of the coefficients of / 1 and fz. 

We also have to choose the factor base bounds 
Bi, the large prime bounds L;, and the sieving 
region. In the experiments described in Section 
10, where we factored numbers in the 98-162 dig
its range with the SNFS and numbers in the 87-
107 digits range with the GNFS, we used factor 
base bounds between 5 -105 and 2.9 -106 and large 
prime bounds between 12 · 106 and 4 · 107 . When 
using classical sieving, the sieving region was a 
rectangle for which we took a in a subinterval of 
[-2 · 106 , 2 · 106 ] and b between 1 and some upper 
bound, in our experiments between 16 · 103 and 
48 · 104 • First we chose the factor base bounds and 
generated the corresponding factor bases :Y;(Bi), 
as described in the next section. Then we chose 

the large prime bounds Li and fixed a range of a

values. For all these a-values and a few b-values, 
preferably equidistributed over the expected range 
of b-values, we checked whether the (a, b)-pair is a 
relation, in a way we will describe in the next sec
tion. Allowing F;(a, b) to contain two large primes 
between Bi and Li, instead of demanding it to be 
smooth over the primes below Bi, we increase the 
probability that (a, b) is a relation. On the other 
hand, Fi(a, b) is now factored over :J'i(Li) instead 
of J';(B;), which enlarges the number of relations 
needed too. In practice this adjustment has shown 
to be useful. In our experiments we needed approx
imately 0.8 · {7r(L1) + n(L2) - 7r(min(L1, L2))/g} 
relations. 

From the number of relations we got for these 
few b-values we could estimate the range of b-values 
needed and from the time the experiment took we 
could estimate the time needed for the whole siev
ing step. In this way we selected a good combi
nation of pair of polynomials, factor base bounds, 
large prime bounds and sieving region. 

6. THE SIEVING 

The sieving is the part of the algorithm during 
which we collect the relations. Before we start 
the sieving we have to generate the factor bases 
:J'i(B;) defined on page 233, just before (2.3). If 
we identify P 1(Fp) with lFP U { oo} by identifying 
(r1 : r2 ) with rif r 2 , then '.Ri(P) (defined in (2.2)) 
consists of those r = ri/rz E lB'v for which fi(r) = 
0 mod p, together with oo if ci,d, = 0 mod p. The 
program rootfinder finds for both polynomials 
f; ( x) and for all primes p below Bi all roots mod
ulo p. Repeated roots appear only once in the 
list. When the prime p divides the leading coeffi
cient c;,d., rootfinder includes the projective root 
(1, 0), which it represents by p. We recall that for a 
and b coprime, p I Fi (a, b) if and only if (a mod p : 
b mod p) E '.R;(p). In terms of the roots of fi(x) 
this means that for a and b coprime, p I Fi (a, b) if 
and only if (a= br mod p and fi(r) = 0 mod p) or 
(p I ci,d; and p \ b). 



238 Experimental Mathematics, Vol. 5 (1996li No. 3 

Two ways of sieving have been implemented: the 
"classical" sieve [Lenstra et al. 1993b, § 4; Buhler 
et al. 1993, § 12], and line sieving, a special form of 
lattice sieving [Pollard 1993b]. 

In the classical way of sieving we first choose 
the a-interval and the b-interval. We start sieving 
with b = 1 and augment b until we reach its upper 
bound. The program gnf s estimates the maximum 
value of F; (a, b) over all values of a and b for both 
polynomials. The polynomial for which this esti
mate is larger is sieved first. Probably fewer pairs 
(a, b) will have a smooth value of F; (a, b) for this 
polynomial, so fewer pairs have to be stored. Fur
thermore this largest value is used to decide upon 
the base of the logarithm, which we choose in such 
a way that the log of the maximum fits in one byte. 
Suppose we start sieving with polynomial fj. 

To sieve for the first polynomial fj we fix b and 
initialize to zero an array that contains one byte 
per a-value. For every prime p < Bi and ev
ery r with fi(r) = 0 mod p we add [logp] (where 
[ · ] is the nearest integer function) to all array 
elements corresponding with a = br mod p. For 
every prime p < Bi with p I Cj,d; and p I b we 
add [log p] to every array element. Then we split 
the a-interval recursively in subintervals until the 
value of ci (a, b) = Fi (a, b) / L; does not vary more 
than a prescribed amount within a subinterval. If 
the value of an array element is close enough to 
log Cj (a, b), then Fi (a, b) is potentially smooth and 
we store the value of a. Now the same sieving pro
cess takes place for the other polynomial h-i· If 
for a pair (a, b) both F1 (a, b) and F2 (a, b) are poten
tially smooth - (a, b) is now called a candidate re
lation-, we use trial division (where we first test if 
a = br mod p before applying an expensive multi
ple precision division of Fi (a, b) on p) to extract all 
factors below B; from Fi(a,b), for i = 1,2. This is 
necessary, since during the sieving we use rounded 
logarithms and other techniques, which not only 
make the sieving faster, but also make the final 
value in the array elements less accurate. 

(In [Golliver et al. 1994] experiments were made 
with repeating the sieving procedure once again, 

instead of using trial division. The candidate rela
tions are marked in the sieving array. In a second 
sieving round the primes p themselves are stored 
instead of adding [log p] to the array elements for 
the candidate relations. Next the integers F1 (a, b) 
and F 2(a, b) are calculated for the candidate rela
tions and the stored primes are divided out. This 
approach costs more memory, but is likely faster.) 

By increasing p, and comparing the sieved log
arithms with the sum of the logarithms of primes 
divided out of Fi(a, b) during trial division so far, 
one can sometimes skip an interval of primes. If 
after the trial division there remains a composite 
part smaller than Li, we try to factor it first us
ing SQUFOF, and if that fails using Pollard Rho 
[Riesel 1985, pp. 191-198, 174-183]. A pair (a, b) is 
a relation if both Fi (a, b) factor over the primes be
low Bi except for at most two large primes between 
Bi and Li. It is stored together with the primes di
viding F; (a, b) that exceed some user-determined 
printing bounds Wi, where i = 1, 2. With these 
bounds W; one can monitor the amount of output 
of the gnf s program. They should be chosen in 
such a way that it fits in the available disk space. 

Using the lattice sieve, we only sieve over pairs 
(a, b) of which we know that one Fi( a, b), say for 
i = j E {1, 2}, is divisible by a special large prime 
between L(!) and L(u), which are the user-chosen 
lower and upper bound for the large primes, re
spectively. The advantage is that the remaining 
part of Fj (a, b) is more likely to be smooth. On 
the other hand we will miss the relations for which 
both F;(a, b) are smooth over the primes below L(l). 

For the implementation of the lattice sieve we use 
an extra feature implemented in the classical way 
of sieving. There we have a possibility of sieving 
over a sublattice of the (a, b)-pairs. We can choose 
an integral, nonsingular matrix M and sieve over 
pairs (a, b) of the form: 

while the program sieves over x and y. This is 
done by substituting the expressions of a and b in 
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terms of x and y in both ~ (a, b) resulting in new 
polynomials Gi(x, y), which are now the polyno
mials whose values should be smooth. Of course 

the roots of the polynomials Fi have to be adapted 
to the roots of the polynomials Gi. When a pair 

(x, y) is a relation, the corresponding pair (a, b), 
together with the primes dividing Gi(x, y) and ex
ceeding wi' are stored. 

The lattice sieve sieves for every prime q in the 
range [L(L), L(u)], for a fixed value of b over all roots 

( r1: r2) E fR1 ( q) U '.R2 ( q)} with r 2 I- 0. When siev
ing over a root (r1 : r 2 ) of '.Rj(q) we sieve only over 
the a-values with a = br1r; 1 mod q, thus guaran
teeing that Fj (a, b) is divisible by q. This is the 
same as using a matrix 

M = (q r1r2 1 mod q) 
0 1 ' 

with y fixed to band x in an interval such that qx+ 
b(r1r2 1 mod q) just fits in the a-interval. (Note 
that, when we compare our notation with that 

used in [Pollard 1993b], we have Vi = (q, 0) and 
V2 = (r1r21 mod q, 1), and that we are applying 
the "sieving by rows" strategy.) Gi(x, y)/q should 
be smooth over the primes below Bi, except for 
at most two large primes between Bj and q. The 
other G3-i(x, y) should be smooth over the primes 
below B 3_j, except for at most two large primes 
between B 3_i and q. Not allowing primes equal to 
or bigger than q to divide one of the Gi(x, y) avoids 
generating duplicate relations, but misses relations 
having two large primes smaller than q for Gi(x, y) 
and a large prime larger than q for G3_i(x,y). Af
ter we have sieved over all roots in '.R1 (q) and '.R2(q) 
we take the next value of b; after we have sieved 
over all values of b we take the next prime in the in
terval [L(u), L<1l]. We implemented lattice sieving 

only for the case of two quadratic polynomials. 
Since the sieving is the most time-consuming 

step of the algorithm, its implementation is critical. 
It is a lot of work to sieve over a small prime p, and 
just a small amount of [logp] is added to the array 
elements. Therefore we sieve only over primes and 
prime powers larger than 30. Also we do not add 

[log p] to all array elements for primes p < Bj with 
p I cj,dj and p I b, but we divide cj (a, b) by p. Fur
thermore we split the a-interval into subintervals 
that fit in the secondary cache of the computer, 
making the sieving faster. For a group of small 
primes, which consists of the primes for which we 
sieve over a power rather than over the prime it
self, we again split the subintervals into smaller 
subintervals which fit into the primary cache. The 
user can install several "early abort" bounds: if the 
leftover part of F; (a, b) after trial division over all 
primes below a bound B < Bi is bigger than a user
speci:fied constant times the square of the large 
prime bound, then the pair (a, b) is not considered 
to be a candidate for a relation and is thrown away. 
In the case of lattice sieving, the values of a with 
a= br1r21 mod q are far away from each other for 
a fixed value of b. In Section 5 we explained how 
we select polynomials such that we can increase the 
efficiency of the sieving by taking a huge a-interval 
and b = 1. Therefore we call it line sieving. 

7. THE FILTERING 

The aim of filtering is just the reduction of the 
amount of data. We want to find a subset S of all 
relations { (a, b)} found in the sieving step and a 
subset 'J of the set of free rational primes p such 
that (flrP) (f18 (a - bai)) is a square in Qn[a;], 
for i = 1, 2. Therefore every algebraic prime p di
viding one of the products (H:r pd; )(Ils Fi (a, b)) 
for a certain root (r1 : r 2 ) E '.Ri(P) (from now on 
denoted by P(ri :r2 )) must occur to an even power 
with respect to this root. (Here we should see 
pd' as the product of one factor p for every root 

( r1 : r2) E '.Ri (p)). A prime Pc r 1 , r 2 ) occurs in a rela
tion (a, b) for polynomial i if p divides F; (a, b) and 
(amodp: bmodp) = (r1:r2). A prime P(r1 :r2 ) 

occurs in a free relation for both polynomials if p 

is a free prime. We say that a prime P(r1 :r2 ) occurs 
in a relation for polynomial i if it occurs in a rela
tion (a, b) for polynomial i or if p is a free prime. 
It is obvious that a relation in which some prime 
P(r, :r2 ) occurs to an odd power for one of the two 
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polynomials is useless, if this prime is not occur
ring in some other relation to an odd power for the 
same polynomial. The filtering stage throws away 
such relations. If a prime Ph:r2 ) occurs to an odd 
power in just two relations for the same polyno
mial and one of them belongs to the set S, the 
other one should also be part of S. In the filtering 
stage the two relations are grouped into a relation
set. If one relation from a relation-set is chosen 
in the set S, then all relations from that relation
set should be in S. By creating the relation-set we 
have eliminated the need to take care of the prime 
P(r1 :r2 ) when looking for the set S. In this way the 
amount of data and the size of the matrix for the 
next linear algebra step are reduced. 

The relations found in the sieving step are read 
in sequentially. In order to regulate the amount 
of memory used, the user first chooses a number 
of temporary files among which the data will be 
distributed. During the filtering process data from 
only one temporary file will be in the working mem
ory of the computer. A hash function is imple
mented that distributes the primes equally over 
the temporary files. For all the primes in the input 
file with norm larger than some user-determined 
bound U ~ max(W1 , W2 ) and occurring to an odd 
power in one of the Fi(a, b), the filter program 
calculates the index of the corresponding tempo
rary file by using the hash function on the prime. 
The relation is written to the file with the small
est number it gets from all these primes. We store 
a, b, and the primes that were written in the in
put file. Extra features in this program have been 
added, such as looking only at the primes below 
some user-determined bound and throwing away 
all the relations containing a prime bigger than 
some user-determined bound. 

When all relations are read in and stored in the 
corresponding files, the combining and throwing 
out process starts. First all relations (a, b) of the 
first file are read in and stored in a heap [Stan
dish 1980, § 3.7.1] in descending order according 
to the largest prime that led to the storage of the 
relation in this file. We start by considering the 

relations in which the largest prime p correspond
ing to this file occur. We calculate the root (r1: r2) 
for this prime for the relations (a, b) by calculating 
(a mod p : b mod p). If d1 + d2 different roots for 
this prime appear in these relations, we append the 
free relation for this prime. If, while looking at a 
prime P( r, : r 2 ), we see the same relation (a, b) twice, 
we throw out one of the occurrences. If some prime 
P(r1 :r2 ) occurs exactly once for one of the polynomi
als, the corresponding relation is thrown out. If a 
prime P( r,: r 2 ) occurs twice for one of the polynomi
als, the two corresponding relations are grouped in 
a relation-set. If the user wishes, for primes P(r1 :r2 ) 

that occur just three times for one of the polynomi
als, the program replaces the three corresponding 
relations by two relation-sets of two relations each. 

Next the resulting relation-sets and the relations 
that were not combined are stored at the next place 
corresponding to the hash function. If the rela
tion or relation-set contains smaller primes to an 
odd power that correspond to the same file, we 
keep the relation(-set) in the working memory. We 
store the relation(-set) in the heap according to the 
largest of those primes. Otherwise, if the relation 
(-set) contains primes to an odd power that corre
spond to other files, we store the relation(-set) in 
the file among those with the smallest number ex
ceeding the number of the file which we currently 
have in memory, or, if there is no such file, in the 
file among those with the smallest number. If the 
relation(-set) only contains larger primes to an odd 
power that correspond to the same file, we keep the 
relation(-set) in the same file, but write it to disk. 
If the relation(-set) does not contain any primes 
larger than wi to an odd power anymore, we write 
it to an output file. This circular queue is con
structed in such a way that, when trying to throw 
out relation(-set )s or combining relation(-set )s into 
(new) relation-sets for some prime p, all relation 
(-set)s containing that prime to an odd power will 
be considered. When we store a relation-set we 
store all relations it contains, together with their 
primes exceeding Wi and the free primes of the 
relation-set. 
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After the first temporary file is treated in this 
way, the same process takes place consecutively 
on the other files. Of course, relation-sets can 
also be combined with each other. Relation-sets 
that become too large, in the sense that they con
tain more relations than a user-determined bound, 
are thrown away, in an attempt to keep the ma
trix for the next linear algebra step sparse. The 
user can fix the maximum number of relation-sets 
that can be thrown away. When the last file has 
been processed the program starts again on the 
first file, until no changes have taken place in the 
last round or the number of passes has reached a 
user-chosen bound. Then all relation(-set )s that 
are still in the temporary files are written to the 
output file. 

The filter program counts the number ofrela
tions and relation-sets that remain and the number 
of primes P(r, :r2 ) occurring to an odd power in one 
of the relations or relation-sets with norm larger 
than U. From these data one can estimate whether 
there are enough relations. 

In practice we used filter several times for one 
number. To save disk space we chose big printing 
bounds, W1 = W2 = 106 , say. First we applied the 
filter program to the output of the sieving step 
with U = W1 . On the remaining relation(-set )s 
we applied the program factorrelations to com
pute the prime factors between a smaller bound 
W' and Wi of F 1 (a, b) and F2 (a, b) for all relations 
(a, b) and store the relation(-set )s, now with all 
primes exceeding W'. Then we again applied the 
filter program, now on all primes exceeding U', 
with W'::; U' < U. These steps were repeated un
til we reached a bound below which many primes 
occur at least four times, so no combining or throw
ing out could be done, or until we were content with 
the resulting matrix size. 

Another method that can be used for reducing 
the amount of data is structured Gaussian elimina
tion, described in [LaMacchia et al. 1991], for ex
ample. A comparison between our filtering method 
and structured Gaussian elimination has not yet 
been made. 

8. THE BLOCK lANCZOS METHOD 

After enough relations have been collected and the 
filter program has reduced the amount of data, 
we try to find a subset S of the remaining rela
tions and a subset 'J of the set of free primes such 

that (TI 'J' p) (Ils (a - ba;)) is a square in Q~ [ ai), for 
i = 1, 2. For simplicity, from now on we view a re
lation left after the filtering stage as a relation-set 
containing only one relation. To this collection of 
relation-sets we append a relation-set for every free 
prime below max:(W1, W2 ), containing this prime. 

A relation-set V consists of two (possibly empty) 
subsets V f and V r that contain the free primes ~nd 
the relations of V, respectively. For every relat10n
set V we construct a vector 

v(V) = L v(p) + L v(a, b). 
V,, Vr 

The vectors v (a, b) are as described in Sections 2 
and 3; the vectors v(p) are described in Section 4. 
We build a matrix M whose columns are all vec
tors v(V). We remove the rows that contain only 
zeros. They correspond to primes ( q, (r1: r2)) oc
curring to an even power in every relation-set V. 
We want to calculate some nontrivial vectors of 
the null space of this matrix. 

Since Gaussian elimination [Knuth 1981, § 4.6.2, 
Algorithm N] requires too much memory f~r ~he 
large sparse matrices we have, we use a variation 
of the iterative Lanczos method. Proofs on both 
standard Lanczos and block Lanczos can be found 
in [Montgomery 1995]. The standard. ~anczos ~1-
gorithm starts with a symmetric, pos1t1ve defikmte 
k x k matrix A over the field K = JR. If b E IR we 
solve Aa: = b by the following iterative procedure: 
set w0 =band 

i-1 

wi = Awi-I - L C;jWj (8.1) 
j=O 

for i > 0, where 
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It can be shown that after at most k iterations we 
will find W,; = O. If l is the first value of i such 
that w, = 0, we have wf Aw, =/= 0 for 0 ~ i < l, 
wJ Aw,;= 0 for i =/= j, and AW~ W, where W is 
the span of w0, w1, .•. , WL-l • One can deduce that 

is a solution of Az =b. Since wf A 2w;-1 = 0 for 
j < i - 2 we can simplify the calculation of W; to 

for i 2:: 2. 
Standard Lanczos can also be applied over other 

fields, provided that wf Aw; =/= 0 when w; =/= 0 dur
ing this process. Working over the field lF2 instead 
of lR has the advantage that one can apply a ma
trix to N different vectors simultaneously, where 
N is the computer word size. Inspired by work 
of Coppersmith [1993], Montgomery [1995] imple
mented the block Lanczos method, which exploits 
this advantage. 

The block Lanczos algorithm creates a sequence 
of subspaces W; instead of vectors w,;. Applying 
standard Lanczos over lF2 has the problem that in 
approximately half of the cases the requirement 
wf Aw, =/= 0 if w,; =/= 0 is violated. In the block 
Lanczos algorithm the analogous requirement is 
~hat no nonzero vector in W; is A-orthogonal to 
VY,. This will hold when Wt AW; is invertible, 
nhere W; is a matrix whose column vectors span 
w,. 

For A a symmetric k x k matrix over a field K 
and Vo an arbitrary k x N matrix, the block Lanc
zos algorithm proceeds by setting, for i = O, 1, ... , 

(8.3) 

i 

Vi+i = AWiSi +Vi - L wjci+l,j· (8.s) 
j=O 

In (8.4), j ranges from 0 through i. In (8.3) the 
N x N; matrix S,; (where N; ~ N) consists of zeros 
except for exactly one 1 per column and at most 
one 1 per row, thus selecting columns from Vi for 
W,;. We choose the columns of Vi in such a way 
that the corresponding columns of V? A Vi are a 
linearly independent spanning set of all columns of 
V? AVi. Thus N; = rank(V? AVi), and one can 
prove that the resulting matrix Wt AW, is invert
ible. The iteration process stops when ~TA Vi = 
0, for i = l say. 

If lli = 0, the matrix Wt A Wi is invertible for 
0 ~ i < l, and we have 

wt A Wi = O for i =/= j, (8.6) 

W[ AVi = O for 0 ~ j < i ~ l, (8.7) 

and finally AW ~ W, where W is the span of 
Wo, W1, ... , Wz_1. If b E W one can further de
duce that the vector 

1-1 

a: = L W;(Wt AW;)-1Wtb 
i=O 

is a solution of Aa: = b. 
If we can choose Si in such a way that span(Vi) ~ 

span(Wo, W1, ••• , W,;+i), it is possible to simplify 
the calculation of Vi+1 in (8.5) in a way similar to 
that in which the calculation of W,; in (8.1) was 
simplified to (8.2): 

l-i+i = AWisr +Vi - W,;C,;+1,i 

- W;-1C;+i,i-1 - W;-2C,;+1,,;-2, (8.8) 

for i :;::: 2. The requirement is fulfilled when the 
columns of Vi are in span(W;, W.:+1 ). From (8.8) 
we can deduce that 

Vi+i = AW,;S[ + 1-i - W, 

where W is a k x N matrix whose columns are 
linear combinations of the columns of W;, W,;_ 1 

and Wi-2· Notice that the columns that were not 
selected from Vi are zero in S'! and in AW.,· S'! • • 
as well. Therefore a nonselected column of Vi is 
equal to the sum of the corresponding columns of 
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Vi+i and W. Using (8.7) and (8.6) we can de
duce that such a column of W must be a linear 
combination of the columns of Wi only. Choos
ing the columns of Vi+i which were not selected 
in Vi guarantees that the nonselected columns of 
Vi are in span(Wi, Wi+1). If these columns of Vi 
are independent but the corresponding columns of 
~~1 A Vi+1 are dependent we cannot fulfi.11 the re
quirement that Wi~1 A Wi+1 is invertible, and the 
algorithm fails. In practice this has never hap
pened. Otherwise we choose a spanning set of 
columns for ~r1 A Vi+i including the columns that 
were not selected for Vi, and choose Si+1 accord
ingly. 

To apply the block Lanczos method to our ma
trix M, we have to deal with several obstructions. 
First M need not be symmetric and therefore we 
apply the algorithm to the symmetric matrix A = 
MT M. It is obvious that any solution of M ::z: = 0 
satisfies Az = 0, but the converse need not be 
true. Secondly, if we want to find a vector from 
the null space of A and start with b = 0, we will 
find the trivial solution. We overcome this prob
lem by starting with a random vector y and taking 
b = Ay. When x is a solution of Az = b = Ay, 
then x - y will be a random vector from the null 
space of A. Thirdly, several vectors from the null 
space of M have to be found, since not every de
pendency corresponding with such a vector will 
lead to a nontrivial factor of n. Note that during 
the iteration steps the vector b only is involved in 
the calculation of the solution vector ::z:. Therefore 
replacing b by a k x N matrix B in the calculation 
of :z: will give a solution of AX = B, with X also 
a k x N matrix. To find several vectors in the null 
space of A we start with a random k x N matrix 
Y and calculate solutions of AX= AY. The N 
column vectors of X - Y will be random vectors in 
the null space of A and we extract the ones which 
are also in the null space of M. 

Final obstructions are the two requirements for 
:z: to be a solution of Az = b. First b has to 
be in W = span(W0 , Wll ... , W1-1)- This c<m: be 
arranged by initializing Vo as AY, where Y 1s a 

random k x N matrix. Secondly, the algorithm 
often terminates with Vt A Vi = 0 but Vi -:/- 0. 
Montgomery presumes that the column vectors of 
A(X - Y) and A Vi are both in span( Vi), which 
has maximal rank N, but in practice the rank is 
much smaller. We may expect that some linear 
combinations of these vectors are in the null space 
of A. Combined with the need to find vectors in 
the null space of M instead of A, it suffices to 
construct a suitable matrix U such that M ZU = 
0, where Z is a k x 2N matrix of the columns of 
X - Y and Vi. We first compute MZ. Then we 
determine a matrix U whose columns span the null 
space of M Z. The output is a basis for ZU. 

For implementing the calculation of Vi+i in (8.8) 
one can bring further down the number of calcula
tions by using the following steps: for i = 0, 1, .. ., 
set 

v;+l = A v;sisr + v;ni+l + v;_1Ei+l + Vi-2..fi'i+11 

where 

ni+l =IN - W."(~T A2v;s,.sr + ~T Av;), 

~* = Si(Sf~TAv;s,.)- 1 Sf, 

Ei+l = -W,"._1 ~T Av;s,sr, 

Fi+1 = -W."._2(1N- ~:1 AVi-1W,"._1) 
(~:1A2Vi-1S1-1S[ 1 + ~:1AV.-1)S;S[, 

and where, for i < 0, Wt and V. are 0 and S, is 
IN. When Si-l = IN then F1+1 = 0 and the term 
Tr F.· m· the expression for Vi+i can be omitted. 
t' i-2 •+l 

For large sparse matrices Lanczos' algorithm re-
quires less storage than Gaussian elimination. It 
only needs the original matrix and some extra vec
tors of length k and some N x N matrices, while 
Gaussian elimination causes fill-in and therefore 
needs approximately k2 bits. When M has d non
zero entries per row on average, the time needed 
by block Lanczos is O(dk2 /N) + <'.J(k2). When d 
is much smaller than k this is considerably better 
than CJ(k3 /N) for Gaussian elimination. . 

In practice we make M extra sparse by removmg 
the first row containing only ones and not append-
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ing any character rows. Also one could implement 
the possibility to remove some of the dense rows 
corresponding to small primes. If M is a kl x k2 
matrix, the output of the block Lanczos algorithm 
will consist of a k2 x N matrix P with N "pseudo
dependencies" of which we still have to find linear 
combinations to get a set S we look for. We solve 
this problem here, although in our implementation 
it is a part of the square root program. For sev
eral quadratic characters ( q, ( 81: 82) )-chosen as 
described in Section 2 with q larger than any prime 
dividing any Fi(a,b)-we form a vector q(q,(s1 :s2)) 
of length k2 by inserting a zero for all of the k2 
relation-sets V with 

II(~) IIC-b (81821 mod q)) = 1 
v q v q 

p f 

and a one otherwise. A vector of length N or
thogonal to all vectors q(q,(si:s2))P is indicating a 
linear combination of the N pseudo-dependencies 
which is favourable to all chosen quadratic charac
ters. We construct a basis for the space orthogo
nal to all vectors q(q,(s, :s2 ))p· Each of these basis 
vectors indicates which pseudo-dependencies of P 
should be combined for a real dependency, thereby 
indicating a set S. 

9. EXTRACTING THE SQUARE ROOT 

At this stage we have two squares (3 2 = (IlpET p) x 

(TI(a,b)Es(a-bai)) and')'2 = (IlpETP)(Il(a,b)ES(a
ba2)) in Qn[a1] and Qn[a2], respectively. We have 
to calculate f3 and 1 · If we write both squares 
as polynomials of degree less than di in o:i, the 
coefficients will be gigantic. Then a conventional 
method such as the one described in [Cohen 1993, 
§ 3.6.2] cannot be used. Couveignes [1993] calcu
lates the square roots modulo several primes and 
applies the Chinese Remainder Theorem, a method 
that presently works only for number fields of odd 
degree. 

Montgomery [1994] attacks the problem using an 
iterative process. He starts by partitioning the set 
S in two subsets S1 and S2 and the set 'J in two 

subsets 'J1 and 'J2 to advance the cancellation of 
primes P(r, :r2 ) in both products 

n Pd; CT F(a b) pE'.ri (a,b)ES1 ' ' (9.1) 

npE'T2pdi Tica,b)ES2 Fi(a, b)' 

i = 1, 2. Here, the expressions pdi for the free 
primes p E {'J1 U'J2} should be seen as the product 
of one factor p for every root (r1: r2) E ~i(p). We 
can for example choose S1 = S, S2 empty, 'J1 = T 
and 'J2 empty; or we can distribute S and 'J over 
the sets Sj and 'Jj randomly. At the end of this 
section we will see how we tried to optimize this 
selection. 

Set 
2 TI.,1Pils1(a-bo:i) 

v1 = TI.,2Pils2(a-bo:1)' 

2 TI:r, p Ils1 (a - bo:2). 
l.12 = TI.,2P Ils2 (a - ba2)' 

then we will calculate v1 and v2 , for which the con
gruence ('f?1(v1))2 = ('f?2(v2 )) 2 mod n holds. The 
following algorithm is applied twice, first to calcu
late v = v1 and then to calculate v = V2. In the 
rest of this section we suppress the index i when 
referring to vi, fi, di, ci,k and o:i. 

Starting with r 1 = v 2 , where v is unknown, we 
will approximate in iteration step j 2': 1 the numer
ator (if j is odd) or the denominator (if j is even) 
of .Jij by 1/j (to be explained below) and calculate 
rH1 using the formula 

(9.2) 

Hence 
L .t.:µ J 2 

2 Ilz=1 'r/21-1 
v = Tj+l LiJ 2 

Ilr=1 'r/21 
(9.3) 

The product of the norms of the numerator and 
the denominator of Tj+l in (9.3) will decrease at 
every iteration step. Small norms of numerator 
and denominator, however, do not guarantee that 
the coefficients of Tj+l as a polynomial of degree 
:S d - 1 in a are small. Let o:1 , o:2, ... , ad be the 
conjugates of o:. For any polynomial h(x) E Q[x] 
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of degree at most d - 1 the Lagrange interpolation 
formula gives 

d-1 d 

h(x) = l:xk Lh(az)cki, 
k=O l=l 

where the ckz can be calculated from 

f(x) d-1 k 

( ( = l:ckzx. 
x - az)f' az) k=O 

Therefore we can bound the coefficients of h( x) 
in terms of the lh(az)I. We use this observation 
by choosing the approximation 7/i in such a way 
that not only the product of the numerator and 
the denominator norms of the successive r 3+i 's de
creases, but also lrJ+1(a1)1 tends to decrease for all 
l. When the norms and the embeddings become 
small enough, we will express the final r 3+1 as a 
polynomial of degree ~ d - 1 in a and find its 
square root by using the computer package P ARI 
[Batut et al. 1995]. 

In order to find the ry/s we work with ideals. 
Denote by ('.) the ring of integers in <Q[ a] and for 
X3 E <Q[a] by (x1 , ••• , Xn)('.) the fractional ideal gen
erated by x1, ... , Xn in ('.). Suppose 

(9.4) 

is the factorization of (J7j)<9 into prime ideals :P1 

of('.), where c1 E Z+ for all l. At each iteration step 
we select an ideal 'J dividing the numerator (if j 
is odd) or the denominator (if j is even) of (9.4). 
The approximation T/i will be a 'small' element of 
'J. If 'J divides the numerator, we divide ( J?j) ('.) by 
(ry3)<9 and this will result in the disappearance of 
'J in the numerator of ( J?j) (j and the appearance 
of a new integral ideal Q of ('.) in the denominator 
of (..Jfj)<9. If 'J divides the denominator the con
verse happens. If N('J) is sufficiently large, than 
N(Q) will be much smaller than N('J). In this way 
the product of the numerator and the denominator 
norms will decrease every iteration step. 

To factor ( r3) ('.) into prime ideals, we use the ideal 

We have 8 ~ r:J and (1, a)<98 = r:J (Montgomery 
1994]. From this we deduce (a-ba)<98 ~ ('.). There
fore, if we multiply an ideal (a - ba) (j by 8 we can 
factor the result in prime ideals, all with a positive 
exponent. The ideals f,p)('.) with p E 'J are already 
integral, so multiplication with a is not necessary 
for these ideals. We start with 

(r ) = g#s2 Ilr1 t.J>)t9 Ils1 {(a - ba}t98} 
1 (j (f#Si Il.,2 {,p)(9 Ils2 {(a - ba)('.)8} 

(9.5) 

and factor the ideals f,p)t9 and (a - ba)('.)3 into 
prime ideals. Therefore we split the primes in 
two subsets: the set of "special" primes which di
vide the index [C'.J: Z[a]] and the remaining primes 
which we call normal. To every prime p and every 
root (r1: r2 ) E :R(p) there correspond prime ideals 
dividing f,p)('.) if p is an element of'J'1U'J2 or dividing 
(a - ba)CJ8 if p divides F(a,b) ((a,b) E S1 U S2). 
For a special prime there may exist more prime 
ideals corresponding to the same root, but for a 
normal prime p the prime ideal :J> corresponding 
to a root ( r 1 : r2 ) E :R(p) is uniquely determined. 
Based on practical experience Montgomery sus
pects-which we cannot prove-that in the latter 
case the correspondence is given by 

{ 
(p, cda - cdr1r21 mod p)('.) if Pf cd, 

:J> = (p)C'.J +a if PI cd, r2 = o, 
a. (p, a - r1r2 1 mod p)r:J if PI cd, r2 # o. 

(9.6) 
For the special primes p and for all their roots 

(r1 : r 2 ) E :R(p), we calculate the ideal '.P using (9.6) 
and factor it into prime ideals with help of the 
computer package PARI. While we read in the free 
primes and relations we accumulate a product of 
the factors of the right hand side of ( 9.5). We make 
a hash table containing an entry for each normal 
prime p and (r1 : r 2 ) E :R(p) we encounter. Each 
entry contains the exponent of the corresponding 
prime ideal in the accumulated product so far: if 
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we meet a normal prime P(ri :r2 ) dividing a free 
prime or F(a, b) in the numerator (or denomina
tor) of (r1)('.) to the power x, we add (or subtract) 
x to this exponent. If we encounter a special prime 
P(ri:f'2)' dividing a free prime p or one of the F(a, b), 
we use PARI to calculate the valuation of (p)r.:J or 
(a - ba)('.)8, respectively, at the ideals of P(r1 :r2 ) 

we computed earlier. Also for these special ideals 
we keep track of the exponent of the ideal in the 
accumulated product so far. We also have to keep 
track of the exponent of a in the accumulated prod
uct. For each ideal (a - bo:)C98 in the numerator 
or denominator we add or subtract 1, respectively. 
When we have read in all free primes and rela
tions we have factored (r1 )('.) into prime ideals and 
a power of a. 

Now we start the iterative approximation pro
cess in which we use the LLL lattice basis reduction 
algorithm [Lenstra et al. 1982]. Assume we want 
to simplify the numerator. The algorithm selects 
an ideal 'J = ::P~1 ••• P~" dividing the numerator of 
(.J7j)C9, with Sr > 0 for all r. N('J) should be 
chosen as large as computationally convenient for 
this first lattice basis reduction. Let { ai, ... , ad} 
be an integral bases of ('.). With help of PARI we 
construct a basis in Hermite Normal Form (HNF) 
[Cohen 1993, §4.7.2] expressed in {a1, ... ,ad} for 
each prime ideal P1 occurring in 'J. P ARI uses these 
bases to construct a basis of 'J, also in HNF ex
pressed in {a1, ... ,ad}· Then we apply a lattice 
basis reduction to these d basis vectors of 'J. We 
find a basis of 'J consisting of 'small' vectors. In 
practice, when using one of these small vectors for 
our approximation T/i, the norm of the numerator 
of (r3+i)<9 will decrease by a factor N('J) in com
parison with the norm of the numerator of ( r3) ('.). 

In comparison with the norm of the denominator 
of (r3)C9, the norm of the denominator of (rj+i)('.) 
will increase by a factor much smaller than N('J). 

We apply a second lattice basis reduction to a 
slight modification of the basis which we find after 
the first lattice basis reduction, to search for an 
element T/i in 'J, which still has the same effect on 
the norm of (7)+1)('.), but yields small irJ+i(o:1)1 for 

all l. Let v(l), v<2l, ... , v(d) be the reduced basis 
after the first lattice basis reduction, where v(r) = 
E::~ Vkr) o:k. While we read in the free primes and 
relations we calculate an approximation of r 1 ( o:1) 

for 1 ::; l ::; d. We choose c such that 

d Lmax (N(rJ)) 1/ 2 

c = N('J) (Disc(! /cd))1/2' 

where Disc(g) is the discriminant of the polynomial 
g and Lmax = 10100 . If all conjugates 0:1, .•• , ad of 
a are real, we construct the vectors 

for 1 ::; r ::; d. If 0:8 and O:t are complex conjugates, 
we replace 

and 

Im(v(rl(o:8 )) 

by cv'2 irJ(o:s)ll/2 

in the construction of Tv(r). In this way all entries 
of the Tv(r) will be real and the absolute value 
of the determinant of the matrix formed by the 
last d entries of these vectors remains the same. 
The determinant equals ±Lmax, which constant has 
been chosen in such a way that the second lattice 
basis reduction algorithm performs well. We apply 
the second lattice basis reduction to the vectors 
{Tv(r)}~=l and take the first d coordinates of one 
of the resulting vectors for T/i· When dividing TJ 

by TJ] the ideal 'J in the numerator of ( r;) ('.) will 
disappear. At the same time the denominator of 
( TJ) ('.) will be multiplied by the square of a new 
ideal 

(TJJ)('.)/'J =: Q. (9.7) 

In practice also for this T/J we have that N(Q) is 
much smaller than N('J). 
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If we simplify the denominator of r· we select 
.d 3 

an 1 eal :J = P~1 ••• P~" which divides the denom-
inator of (.JTj)fJ. For the first LLL reduction the 
algorithm proceeds as above. For the second LLL 
reduction the vectors Tv(r) become 

Tv(r) = ( v~r), ..• , v~~ll 

cvCr) (a1)lri(a1) 1112' ... 'c v(r) ( ad)lri(ad) 11/2) T 

for 1 ~ r ~ d, and we replace cvCrl(aa)h(aa)l 1/ 2 

by cV'2Re(vCrl(aa))h(a8 )1 112 and 

CV(r)(at)!ri(at)l 112 by cV2Im(v(r)(a8 ))h(a8 )1 1/ 2 

in the construction of Tv(r) if a 8 = at. The con
stant c should be calculated from 

d Lmax c = -=-:-:-.....,--~~~--=-=--~~~~ 
N(:J) (Disc(! /cd))l/2 (N(ri))l/2 · 

In the next iteration step we avoid factoring Q 
into prime ideals by including this ideal as a fac
tor of the new :J. Its basis in HNF is found by 
using ( 9. 7). Furthermore we need the embeddings 
of r3 for the second LLL reduction. Using (9.2) we 
can calculate lri+i(az)I from lri(a1)I and l11i(a1)12. 
We stop with the iterative process when the norms 
of numerator and denominator and the embeddings 
of T;+ 1 are small enough. 

Next we calculate the square root yl1j+l. with 
help of PAR!. We first write Tj+i as a polynomial 
in a. We construct an integer t, being the product 
of the index and the norms of all ideals which are 
still in the denominator of T;+l· Hence tri+i is a 
polynomial of degree d in a with coefficients in Z. 
During the algorithm we keep track of the coeffi
cients of the numerator and the denominator of Tj 

as a polynomial in a of degree < d modulo several 
large primes. We use this to express the final tr;+1 
as a polynomial in a of degree < d modulo these 
primes and we use the Chinese Remainder Theo
rem to find its coefficients in Z. We divide this 
element of Z[a] by t and find its square root by us
ing the method mentioned in [Cohen 1993, § 3.6.2]. 
This completes the computation of v. 

We now apply the homomorphism 'Pii for i = 
1, 2, to the expressions found for vi: 

l illJ 
"'·(v·) = ~(m)l11=~ 1/21-1(m) d 
ri i v • J+l L J. J mo n. 

l1i~11/21(m) 

Here the 1/i(m) mod n are calculated and multi
plied with the 1/i ( m) mod n, for j < i, straight 
after 1/i has been calculated, so there is no need to 
store a history. We calculate gcd( <p1 (v1) -<p2 (v2), n) 
and hope to find a nontrivial factor of n. 

In practice the second lattice basis reduction ap
plied to the Tv(r) will yield linear combinations of 
the vC1l(ai}, ... , v(d<)(a,) with small coefficients. 
Therefore we can round the entries of the Tv(r) 

without introducing a lot of round-off accumula
tion. This is the reason why we do not perform 
one single lattice basis reduction. Now both re
ductions use integer arithmetic. 

It is important for the speed of the algorithm 
to select the sets S1, S2, 'J1 and 'J2 such that we 
get as much cancellation of primes P(ri:~) as pos
sible. We start with putting half the number of 
relations of S and half the number of free primes of 
'Jin S1 and 'Ji, respectively, and the rest in S2 and 
'J2• While we read in all relations and free primes 
for one of the polynomials, /i(x) say, and accumu
late the prime ideal factorization of the numerator 
and the denominator of Vi, we decide whether it 
is profitable to put the current relation (a, b) or 
free prime p in the denominator while it was orig
inally scheduled for the numerator (or vice-versa). 
H we decide to do so, then we put this relation for 
this /i in the denominator and compensate this by 
multiplying the final 'Pi(v,) with a - bm mod nor 
p mod n respectively. 

When using PARJ for calculations in number 
fields it is necessary to use the function ini talg, 
which calculates amongst others an integral basis. 
This function needs to factor the discriminant of 
the polynomial, which can be too hard for PARJ. 
We solve this problem by factoring the discrimi
nant ourselves and giving the primes to PARl with 
the function addprimes. 
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10. EXPERIMENTAL RESULTS 

In this section we summarize factorization runs for 
several integers of up to 162 digits, indicating the 
time spent on each major step of the algorithm. 

Except for 7299 +1, all numbers were initially ex
posed to trial division and the elliptic curve method 
[Cohen 1993, § 10.3] to find the factors below 40 
digits. Thus, in the tables, "C98 from 7128 + 6128" 
means a 98-digit divisor of 7128 + 6128 obtained by 
elimination of "small" primes (3329 and 7329793). 
If we found only a few small factors we applied the 
SNFS; otherwise we applied the GNFS. 

The numbers factored with the SNFS are listed 
below, and the relevant statistics appear in Table 1. 
Figure 1 on page 236 showed the dependence on 
a and b of the number of relations found, for the 

Cl19 from 3319 -1. Figure 2 shows the dependence 
on b of the number of relations, and Figure 3 the 
average computation time per relation, for the C98 
from 712s + 6128. 

The numbers factored with the GNFS are listed 
below, and the relevant statistics appear in Table 2. 
Figure 4 shows, for the C97 from 12441+ 1, the effect 
that varying the printing bounds W1 = W2 has 
on the time needed for the square root step. The 
square root program needs the full factorization of 
both integers F;(a, b) of the relations in S. Primes 
larger than W; are printed in the input file, while 
smaller ones have to be found with trial division. 
With large printing bounds trial divisions become 
very time-consuming. This dependence explains 
the varying results for square root timings in the 
preceding tables. 

098 from 7128 + 6128, factored into two primes of 49 and 50 digits, 
10660 05182 57236 29640 65225 03966 77363 03849 50429 0049 and 
57198 45548 36062 92671 60809 76987 21205 78590 7158143489. 

0106 from 2543 - 1, factored into two primes of 42 and 64 digits, 
53495 5385319592 51122 741917587257602 50633 51 and 
23078 80312 51405 0317 4 34 773 23375 33794 87634 08223 08108 08744 50183 6223. 

OlUJ from 3319 -1, factored into two primes of 41 and 79 digits, 
26425 3874214904 71188 79373 47631 77943 61332 9 and 
27428 5258218630 29446 25818 32587 63622 21386 27169 38311 70052 36010 98185 10078 84358 4437. 
Note that 91(z) = z10 + z9 + · · · + :i; + 1, g2(z):;:::; :i; - 329 , and m = 329 satisfy the requirements. Now express 
91(z)/:t5 as a polynomial in x + (1/x). 

0123 from 2511 - 1, factored into two primes of 57 and 67 digits, 
14478 0974187086 26090 39350 3476141374 56436 36578 29092 4150417 and 
25375 99745 02551913415676116426 759191352183553 55292 24725 59253 8658153. 
Note that Y1(x) = x6 + a:5 + · · · + x + 1, g2(x) = x - 273, and m9 = 273 satisfy the requirements. Expressing 
U1(x)/x3 as a polynomial in x + (1/a:) yields h1(x) = ::c3 + x 2 - 2x - 1 with mh = 273 + 2-73. Use 
mh = 2((236 + 2-37) 2 -1) to rewrite h1 (x) as a polynomial in 236 + 2-37 • This yields 
k1(x) = 8x6 - 20x4 +12x2 -1 and mk = 236 + 2-37. Finally ft(x) = 8k1(x/2), so m1 =237+2-36. 

0135 from 7373 +1, factored into two primes of 55 and 80 digits, 
45963 69165 5852911123 52829 63785233915709014470 88078 32677 and 
30968 64234 937216855602856 08720 92954 38228 95151 06526 40624 34659 217 44 90064 58993 26733. 

The 0162 (12151 -1)/11, factored into two primes of 44 and 119 digits, 
16537 2378515646 88924 26140 70416 48853 99065 7743 and 49717 86780 03233 78818 76339 90059 60016\ 

487476598349539211569747005759153228241911167 043200927016884 2857310302 4883134912 6419. 

Numbers factored with the SNFS. 
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C98 C106 0119 

factor of 7128 + 6128 2543 - 1 3319 - 1 
fi(x) x4 +1 4x4 + 2x2 + 1 x5 + x 4 - 4x3 - 3x2 + 3x + 1 
h(x) 532x _ 732 x - 290 329x - 358 - 1 
m 7326- 32 mod n 290 329 + 3-29 mod n 
sieving region lal S 2 · 106 la! S 3.5 · 105 Jal S 16 · 105, 1SbS103000; 

1sbs16 · 103 1sbs105 !al S 12·105, 103001SbS345000 
B1 1.6 . 106 5·105 106 

B2 1.6 . 106 8.1·105 1.4. 106 

Li 3 · 107 12. 106 2 · 107 

L2 3·107 12. 106 2.5. 107 

sieving time 450 hours 250 hours 800 hours 
# sieving rel. 2,337,618 1,106,949 2,221,686 
# filter rel. / sets 982,672/587,076 264,583/126,254 774,265/349,961 
matrix size 539,020 x 620,650 128,546 x 133,738 348,852 x 367,182 
bl. Lanczos time 74 min 6 ruin 38 min 
square root time 69 min 47 min 62 min 
#trials 1 2 1 

Cl23 0135 0162 

factor of 2511 - 1 7373 +1 12151 - 1 

Ji (x) x 6 - 10x4 + 24x2 - 8 x 5 + 732 12x5 -1 
h(x) 236x - 273 -1 x - 7315 x -1230 

m 237 + 2-36 mod n 7315 1230 

sieving region Jal S 6 · 105 Ja! S 2·106 ? 

1sbs37·104 1 s b s 2.6 . 105 

B1 15. 105 2. 106 ? 

B2 11·105 2. 106 ? 

L1 3. 107 3. 107 108 

L2 2.5. 107 3 · 107 108 

sieving time 700 hours 2150 hours see caption 

# sieving rel. 1,901,187 2,746,848 8.98·106 

# filter rel. / sets 420,896/222,014 1,154,111/583,631 1,807,808/822,361 
matrix size 430,018 x 439,058 581,870 x 590,573 828, 077 x 833, 017 

bl. Lanczos time 97 hours 92 min 205 min 

square root time 13 hours 130 min 10.5 hours 

#trials 1 1 2 

TABLE 1. Statistics of SNFS runs. The square root timings are given for one dependency. "Sieving time" is 
a rough estimate on an SGI Indy workstation (100 MHz R4000SC processor), except for the Cl62, where it 
represents 8 weeks of idle time on 30 workstations at Oregon State University, Corwallis (USA). "Block Lanczos 
time" is time on one processor of a Cray C98, except for the 0123, where it is on one processor of an SGI 
Challenge (150 MHz R4400SC processor). "Square root time" is always on one 150 MHz R4400SC processor of 
an SGI Challenge. A question mark indicates that records have been lost. See also Figure 1 for the 0119 and 
Figures 2 and 3 for the C98. 
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C8'1 from 7299 + 1, factored into two primes of 28 and 59 digits, 
80975 407891689909106 86588 841 and 16798 25963 43052 65460 7764318240 65479 28992 59252 26507 26238 4081. 
151128965885928672997:11, -1445482064037103573036:1: - 8289110711415033862728 
10193 0205349942 5445447 z2 + 6959100565 51957 538M 28~ - 73926 1567848940 7526$ 915 
129714918197797 46345 5765215880 55986 93259 36651203o900057 23712 501519760440714 27556 35889 06 

729879993:1:' + 19574 917fil.87828 93290 2 :II - 77557 88285642471233065859 2664 7 4816 
211321794711:2 - 7907605467511404251356:11 - 23092862466613462049239427852471175 
915846356041789 38356370529300221754 0971328747 97358 88020 12186 3949714431 09944 13684 20046 6 

CDT from 12441 - 1, factored into two primes of 44 and 53 digits, 
80563 59586 39915 46010 6611158818 06884 967004027 and 
34988 88222.91413 ~249194565198 20527 95623 4275~ 61821641. 
-30177 ~ 3 e2 +. 43549182451078739044. 895h. + 35629 878935642a22300 4846061872 83613 50 
-53619927"'8J)h2 .-. 480394A)l304579497453 6.1008z + -T94~1943'T800'l"l$SS097948l9 80102858 
-~329914 27719~1~7 J,39247~~52443268,"61,38$;1687~~~1613203$13827 86658 32257 58151286534 

... C1U$ from·3~1 ~ 1, factored Uito two p~ fi52 .and 54 digits, 
· 1511495257 84007071~~9$86569492 29319 35039928231~04~3 and 
. 50195 39973 89244528404247900279 090654,1054 $$962124251929. 
342910527737 e2 + 86817 06933 3519465483 64.161.2 :i: + 54075 9o62@04'1829'7135 71395 36186 42487 4771 
· 12420602550'19 :r.2·· - 9130492731817~ 8161162559218 :i: + 1291287673-00065233631168229536 26798 24208 oo 
22914 35905 5$869 46906211$81;.$38SS'l~1923164230 75426621W65193563$802756 74926 8939812282 4548140116 05440 05942 

0100. from 121~7 + 1 Was ~· mto two primes of .43 .and. 63,. digits, 
59016 4847916668 269~9387519o8o 942004Q637197 and 
78003475451)486944147524191887775478241509$147758932024091338211. 
19oos041611sr _. uu64s163n4436mo6~00:294a:...:, 32A~o.281000495H614s9103171598233762s5144 
-7850832606 ~:II~ - 40196864tl05l742 f;B3442801 72:t'.+ 164i0860800.0l456QM17923$7 66543 25668 77138 27 
~~~~~~-~~~~~~~~~~~~~~9 

0107' from 6223 +11 fBctored int~2 primes of48$11d 59 digits, 
8351906552 5919.78'ro586319955878 '1'6,4574136S ·53fm' 743 an.A 
16600 ss9a1sa8555566406800 i9mA7465ossw 911841sm 85200 6987. 
-5401617762 83 za - 42$1942$3028714 253779289al5 a: ...,, 46786 .116410 85791 7980610186 3478910720 07155 8 
~24179951.48.05~~+16311970$1612$7 ~~85 31988 $b ·...,, 31165.39943 5W1867081 97753 30136 4345135069 86 
1263153059 9467'7767618531284126 2427113734 77Ji!l~;l8i:jg92404 83922 81605 2~25 32707 972644098132306 53725 40515 54848 92 

Numbers factored with the GNFS. After each factorization we give the polynomials ft and f2 used in the run, 
and the integer m. The C87 was factored twice, once with classical sieving (first set of values of /i. '2, m) and 
once with lattice sieving. See also Figure 4 for the C97. 
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I 

C87 C87 C97 
factor of 7299 + 1 7299 +1 12441+1 
sieving method classical lattice lattice 
sieving region !af S 2 · 106 , 1 S b S 48 · 104 !al S 7.5 · 1012 , b = 1 /a/ S 25 · 1012, b = I 
B1 =B2 1.6. 106 106 2.2 · 106 
L(l) (L1=4·107) 106 10. 106 
L(u) (L2=4·107) 2.346·106 £(u) = 24 · 106 

sieving time 2100 hours 1500 hours 3500 hours 
# sieving rel. 3,480,325 521,901 3,599,014 
# filter rel. / sets 741,930/338,580 426,241/409,699 1,247,094/604,205 
matrix size 364,215 x 366,907 273, 475 x 437, 441 637, 711 x 644, 950 
bl. Lanczos time 41 min<2) 26 min<2l 123 min(2l 
square root time 128 min(3) 36 min<3l 78 min(3) 

#trials 1 2 2 

C105 C106 C107 

factor of 3367 -1 12157 + 1 6223+1 

sieving method lattice lattice lattice 
sieving region !al S 7.5 · 1014, b = 1 !al S 1015 , b = 1 !al S 1015, b = 1 

B1 =B2 1.6. 106 2.7 · 106 2.9 · 106 

£(!) 23·106 2.7·107 2.72 · 107 

£(u) 30·106 3·107 3·107 

sieving time see caption 11900 hours 11200 hours 

# sieving rel. 3.59 · 106 3,272,224 3,098,987 

# filter rel. / sets ? /1,218,633 2,151,431/1,191,636 2,152,685/1,155,270 

matrix size 1,284,719x1,294,861 1,266,098x1,295,043 1, 226, 577 x 1, 252, 846 

bl. Lanczos time 439 znin(2) 423 min<2> 421 min<2l 

square root time 4.8 hours<3l 2.0 hours<4l 2.1 hours<3l 

#trials 1 1 5 

TABLE 2. Statistics of GNFS runs. The square root timings are given for one dependency. "Sieving time" is 
a rough estimate on an SGI Indy workstation (lOOMHz R4000SC processor), except for the C105, where it 
represents 8 weeks of idle time on 40 workstations at Oregon State University, Corwallis (USA). "Block Lanczos 
time" is time on one processor of a Cray C98. "Square root time" is on one processor of an SGI Challenge 
(150MHz R4400SC processor), except for the Cl06, where the clock rate was 200MHz. A question mark 
indicates that records have been lost. See also Figure 4 for the C97. 
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