1,901 research outputs found

    Bistable hysteresis and resistance switching in hydrogen gold junctions

    Get PDF
    Current-voltage characteristics of H2-Au molecular junctions exhibit intriguing steps around a characteristic voltage of 40 mV. Surprisingly, we find that a hysteresis is connected to these steps with a typical time scale > 10 ms. This time constant scales linearly with the power dissipated in the junction beyond an ofset power P_s = IV_s. We propose that the hysteresis is related to vibrational heating of both the molecule in the junction and a set of surrounding hydrogen molecules. Remarkably, we can engineer our junctions such that the hysteresis' characteristic time becomes >days. We demonstrate that reliable switchable devices can be built from such junctions.Comment: Submitted to Phys. Rev. Let

    Spin Relaxation in Graphene with self-assembled Cobalt Porphyrin Molecules

    Get PDF
    In graphene spintronics, interaction of localized magnetic moments with the electron spins paves a new way to explore the underlying spin relaxation mechanism. A self-assembled layer of organic cobalt-porphyrin (CoPP) molecules on graphene provides a desired platform for such studies via the magnetic moments of porphyrin-bound cobalt atoms. In this work a study of spin transport properties of graphene spin-valve devices functionalized with such CoPP molecules as a function of temperature via non-local spin-valve and Hanle spin precession measurements is reported. For the functionalized (molecular) devices, we observe a slight decrease in the spin relaxation time ({\tau}s), which could be an indication of enhanced spin-flip scattering of the electron spins in graphene in the presence of the molecular magnetic moments. The effect of the molecular layer is masked for low quality samples (low mobility), possibly due to dominance of Elliot-Yafet (EY) type spin relaxation mechanisms

    Nocturnal dissolved organic matter release by turf algae and its role in the microbialization of reefs

    Get PDF
    The increased release of dissolved organic matter (DOM) by algae has been associated with the fast but inefficient growth of opportunistic microbial pathogens and the ongoing degradation of coral reefs. Turf algae (consortia of microalgae and macroalgae commonly including cyanobacteria) dominate benthic communities on many reefs worldwide. Opposite to other reef algae that predominantly release DOM during the day, turf algae containing cyanobacteria may additionally release large amounts of DOM at night. However, this night-DOM release and its potential contribution to the microbialization of reefs remains to be investigated. We first tested the occurrence of hypoxic conditions at the turf algae-water interface, as a lack of oxygen will facilitate the production and release of fermentation intermediates as night-time DOM. Second, the dissolved organic carbon (DOC) release by turf algae was quantified during day time and nighttime, and the quality of day and night exudates as food for bacterioplankton was tested. Finally, DOC release rates of turf algae were combined with estimates of DOC release based on benthic community composition in 1973 and 2013 to explore how changes in benthic community composition affected the contribution of night-DOC to the reef-wide DOC production. A rapid shift from supersaturated to hypoxic conditions at the turf algae-water interface occurred immediately after the onset of darkness, resulting in night-DOC release rates similar to those during daytime. Bioassays revealed major differences in the quality between day and night exudates: Night-DOC was utilized by bacterioplankton two times faster than day-DOC, but yielded a four times lower growth efficiency. Changes in benthic community composition were estimated to have resulted in a doubling of DOC release since 1973, due to an increasing abundance of benthic cyanobacterial mats (BCMs), with night-DOC release by BCMs and turf algae accounting for >50% of the total release over a diurnal cycle. Night-DOC released by BCMs and turf algae is likely an important driver in the microbialization of reefs by stimulating microbial respiration at the expense of energy and nutrient transfer to higher trophic levels via the microbial loop, thereby threatening the productivity and biodiversity of these unique ecosystems. Read the free Plain Language Summary for this article on the Journal blog

    Phenotypic plasticity of carbon fixation stimulates cyanobacterial blooms at elevated CO2

    Get PDF
    Although phenotypic plasticity is a widespread phenomenon, its implications for species responses to climate change are not well understood. For example, toxic cyanobacteria can form dense surface blooms threatening water quality in many eutrophic lakes, yet a theoretical framework to predict how phenotypic plasticity affects bloom development at elevated pCO2 is still lacking. We measured phenotypic plasticity of the carbon fixation rates of the common bloom-forming cyanobacterium Microcystis. Our results revealed a 1.8- to 5-fold increase in the maximum CO2 uptake rate of Microcystis at elevated pCO2, which exceeds CO2 responses reported for other phytoplankton species. The observed plasticity was incorporated into a mathematical model to predict dynamic changes in cyanobacterial abundance. The model was successfully validated by laboratory experiments and predicts that acclimation to high pCO2 will intensify Microcystis blooms in eutrophic lakes. These results indicate that this harmful cyanobacterium is likely to benefit strongly from rising atmospheric pCO2

    The mechanical response of lithographically defined break junctions

    Get PDF
    We present an experimental study on the mechanical response of lithographically defined break junctions by measuring atomic chain formation, tunneling traces and Gundlach oscillations. The calibration factor, i.e., the ratio between the electrode movement and the bending of the substrate, is found to be 2.5 times larger than expected from a simple mechanical model. This result is consistent with previous finite-element calculations. Comparing different samples, the mechanical response is found to be similar for electrode separations >4 angstrom. However, for smaller electrode separations significant sample-to-sample variations appear. These variations are ascribed to differences in the shape of the two electrodes on the atomic scale which cannot be controlled by the fabrication process

    Single atom adhesion in optimized gold nanojunctions

    Get PDF
    We study the interaction between single apex atoms in a metallic contact, using the break junction geometry. By carefully 'training' our samples, we create stable junctions in which no further atomic reorganization takes place. This allows us to study the relation between the so-called jump out of contact (from contact to tunnelling regime) and jump to contact (from tunnelling to contact regime) in detail. Our data can be fully understood within a relatively simple elastic model, where the elasticity k of the electrodes is the only free parameter. We find 5 < k < 32 N/m. Furthermore, the interaction between the two apex atoms on both electrodes, observed as a change of slope in the tunnelling regime, is accounted for by the same model
    • …
    corecore