11 research outputs found

    A Carbon Catalyst Co-Doped with P and N for Efficient and Selective Oxidation of 5-Hydroxymethylfurfural into 2,5-Diformylfuran

    No full text
    A newly designed N and P co-doped carbon material has been developed to catalyze the conversion of 5-hydroxymethylfurfural (HMF) to 2,5-furandialdehyde (DFF) with unprecedented yield and selectivity and demonstrating a synergistic effect between the heteroatoms. The desired catalyst was first synthesized via a pyrolysis method using urea as the nitrogen and carbon source followed by calcination with phytic acid solution as the phosphorus source. The mass ratio of phytic acid to C3N4 and calcination temperature were varied to investigate their effects on catalyst synthesis and microstructure as well as subsequent catalytic activity in simple reaction systems under oxygen. The effect of reaction conditions on the final HMF conversion and DFF selectivity were also investigated systematically. The P−C−N-5-800 catalyst obtained with the optimized annealing temperature of 800 °C and mass ratio of phytic acid/C3N4 of 5 enabled a 99.5 % DFF yield at 120 °C for 9 h under 10 bar oxygen pressure, being the highest among any reported metal-free heterogeneous catalyst to date. The excellent performance of P−C−N-5-800 could be ascribed to the synergy between N and P heteroatoms as well as the high content of graphitic-N and the P−C species within the carbon structure. Reusability studies show that the P−C−N-5-800 catalyst was stable and reusable without deactivation. These results strongly suggest that P−C−N-5-800 is a promising catalyst for large-scale production of DFF in a green manner

    Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics

    No full text
    A microfluidic device for performing single copy, emulsion Reverse Transcription Polymerase Chain Reaction (RT-PCR) within agarose droplets is presented. A two-aqueous-inlet emulsion droplet generator was designed and fabricated to produce highly uniform monodisperse picoliter agarose emulsion droplets with RT-PCR reagents in carrier oil. Template RNA or cells were delivered from one inlet with RT-PCR reagents/cell lysis buffer delivered separately from the other. Efficient RNA/cell encapsulation and RT-PCR at the single copy level was achieved in agarose-in-oil droplets, which, after amplification, can be solidified into agarose beads for further analysis. A simple and efficient method to graft primer to the polymer matrix using 5?-acrydite primer was developed to ensure highly efficient trapping of RT-PCR products in agarose. High-throughput single RNA molecule/cell RT-PCR was demonstrated in stochastically diluted solutions. Our results indicate that single-molecule RT-PCR can be efficiently carried out in agarose matrix. Single-cell RT-PCR was successfully performed which showed a clear difference in gene expression level of EpCAM, a cancer biomarker gene, at the single-cell level between different types of cancer cells. This work clearly demonstrates for the first time, single-copy RT-PCR in agarose droplets. We believe this will open up new possibilities for viral RNA detection and single-cell transcription analysis. 漏 2012 American Chemical Society

    Massively Parallel Single-Molecule and Single-Cell Emulsion Reverse Transcription Polymerase Chain Reaction Using Agarose Droplet Microfluidics

    No full text
    A microfluidic device for performing single copy, emulsion Reverse Transcription Polymerase Chain Reaction (RT-PCR) within agarose droplets is presented. A two-aqueous-inlet emulsion droplet generator was designed and fabricated to produce highly uniform monodisperse picoliter agarose emulsion droplets with RT-PCR reagents in carrier oil. Template RNA or cells were delivered from one inlet with RT-PCR reagents/cell lysis buffer delivered separately from the other. Efficient RNA/cell encapsulation and RT-PCR at the single copy level was achieved in agarose-in-oil droplets, which, after amplification, can be solidified into agarose beads for further analysis. A simple and efficient method to graft primer to the polymer matrix using 5′-acrydite primer was developed to ensure highly efficient trapping of RT-PCR products in agarose. High-throughput single RNA molecule/cell RT-PCR was demonstrated in stochastically diluted solutions. Our results indicate that single-molecule RT-PCR can be efficiently carried out in agarose matrix. Single-cell RT-PCR was successfully performed which showed a clear difference in gene expression level of EpCAM, a cancer biomarker gene, at the single-cell level between different types of cancer cells. This work clearly demonstrates for the first time, single-copy RT-PCR in agarose droplets. We believe this will open up new possibilities for viral RNA detection and single-cell transcription analysis
    corecore