331 research outputs found
A Double Joint Bayesian Approach for J-Vector Based Text-dependent Speaker Verification
J-vector has been proved to be very effective in text-dependent speaker
verification with short-duration speech. However, the current state-of-the-art
back-end classifiers, e.g. joint Bayesian model, cannot make full use of such
deep features. In this paper, we generalize the standard joint Bayesian
approach to model the multi-faceted information in the j-vector explicitly and
jointly. In our generalization, the j-vector was modeled as a result derived by
a generative Double Joint Bayesian (DoJoBa) model, which contains several kinds
of latent variables. With DoJoBa, we are able to explicitly build a model that
can combine multiple heterogeneous information from the j-vectors. In
verification step, we calculated the likelihood to describe whether the two
j-vectors having consistent labels or not. On the public RSR2015 data corpus,
the experimental results showed that our approach can achieve 0.02\% EER and
0.02\% EER for impostor wrong and impostor correct cases respectively
A deep learning-based approach for electrical equipment remaining useful life prediction
Electrical equipment maintenance is of vital importance to management companies. Efficient maintenance can significantly reduce business costs and avoid safety accidents caused by catastrophic equipment failures. In the current context, predictive maintenance (PdM) is becoming increasingly popular based on machine learning approaches, while its research on electrical equipment such as low-voltage contactors is in its infancy. The failure modes are mainly fusion welding and explosion, and a few are unable to switch on. In this study, a data-driven approach is proposed to predict the remaining useful life (RUL) of the low-voltage contactor. Firstly, the three-phase alternating voltage and current records the life of electrical equipment by tracking the number of times it has been operated. Secondly, the failure-relevant features are extracted by using the time domain, frequency domain, and wavelet methods. Then, a CNN-LSTM network is designed and used to train an electrical equipment RUL prediction model based on the extracted features. An experimental study based on ten datasets collected from low-voltage AC contactors reveals that the proposed method shows merits in comparison with the prevailing deep learning algorithms in terms of MAE and RMSE
Enhancing cutting tool sustainability based on remaining useful life prediction
As a critical part of machining, cutting tools are of great importance to sustainability enhancement. Normally, they are underused, resulting in huge waste. However, the lack of reliable support leads to a high risk on improving the cutting tool utilization. Aiming at this problem, this paper proposes an approach to enhance the cutting tool sustainability. A non-linear cutting tool remaining useful life prediction model is developed based on tool wear historical data. Probability distribution function and cumulative distribution function are used to quantize the uncertainty of the prediction. Under a constant machining condition, a cutting tool life is extended according to its specific remaining useful life prediction, rather than a unified one. Under various machining conditions, machining parameters are optimized to improve efficiency or capability. Cutting tool sustainability is assessed in economic, environmental and social dimensions. Experimental study verifies that both material removal rate and material removal volume are improved. Carbon emission and cutting tool cost are also reduced. The balance between benefit and risk is achieved by assigning a reasonable confidence level. Cutting tool sustainability can be enhanced by improving cutting tool utilization at controllable risk.©2020 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed
Measurement method of torsional vibration signal to extract gear meshing characteristics
A technique in measuring torsional vibration signal based on an optical encoder and a discrete wavelet transform is proposed for the extraction of gear meshing characteristics. The method measures the rotation angles of the input and output shafts of a gear pair by using two optical encoders and obtains the time interval sequences of the two shafts. By spline interpolation, the time interval sequences based on uniform angle sampling can be converted into angle interval sequences on the basis of uniform time sampling. The curve of the relative displacement of the gear pair on the meshing line (initial torsional vibration signal) can then be obtained by comparing the rotation angles of the input and output shafts at the interpolated time series. The initial torsional vibration signal is often disturbed by noise. Therefore, a discrete wavelet transform is used to decompose the signal at certain scales; the torsional vibration signal of the gear can then be obtained after filtering. The proposed method was verified by simulation and experimentation, and the results showed that the method could successfully obtain the torsional vibration signal of the gear at a high frequency. The waveforms of the torsional vibration could reflect the meshing characteristics of the teeth. These findings could provide a basis for fault diagnosis of gears
- …