9 research outputs found

    Frequency drift in MR spectroscopy at 3T

    Get PDF
    Purpose Heating of gradient coils and passive shim components is a common cause of instability in the B0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. Method A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC). Results Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. Discussion This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.publishedVersio

    Frequency drift in MR spectroscopy at 3T

    Get PDF
    Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson\u27s and intraclass correlation coefficients (ICC). Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p \u3c 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed

    Frequency drift in MR spectroscopy at 3T

    No full text
    Purpose Heating of gradient coils and passive shim components is a common cause of instability in the B0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. Method A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC). Results Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. Discussion This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed

    Anterior-posterior length discrepancy of the spinal column in adolescent idiopathic scoliosis—a 3D CT study

    No full text
    Background Context: One of the characteristics of reported observations in adolescent idiopathic scoliosis (AIS) is that the thoracic spine is longer anteriorly than posteriorly, more pronounced around the apex than the transitional zones. This reversal of the normal kyphotic anatomy of the thoracic spine is related to questions of etiopathogenesis of AIS. The changes in the anatomy of the anterior column have been described rather in detail; however, the role of the posterior spinal column and the laminae has so far not been elucidated. If the posterior column exhibits a longitudinal growth disturbance, it could act as a tether, leading to a more or less normal anterior column with a deformed and shorter posterior aspect of the spine. So far, it has remained unclear whether this anterior-posterior length discrepancy is the result of relative anterior lengthening or relative posterior shortening, and which tissues (bone, disc, intervertebral soft tissue) are involved. Purpose: The present study aimed to compare the discrepancy of the anterior-posterior length of the spinal column in the “true” midsagittal plane of each vertebra in patients with idiopathic scoliosis versus controls, using three-dimensional computed tomography (CT) scans. Study Design/Setting: This is a cross-sectional study. Patient Sample: The sample consisted of computed tomography scans of 80 patients with moderate to severe AIS (Cobb angle: 46°–109°) before scoliosis navigation surgery and 30 non-scoliotic age-matched controls. Outcome Measures: The height of the osseous and non-osseous structures from anterior to posterior in the “true” midsagittal plane has been determined: the anterior side of the vertebral body and disc, the posterior side of the vertebral body and disc, the lamina and interlaminar space and the spinous process and interspinous space, as well as the height ratios between the anterior column and posterior structures of the primary thoracic and lumbar AIS curves and corresponding levels in non-scoliotic controls. Methods: Semiautomatic software was used to reconstruct and measure the parameters in the true midsagittal plane of each vertebra and intervertebral structure that are rotated and tilted in a different way. Results: In AIS, the anterior height of the thoracic curve was 3.6±2.8% longer than the posterior height, 2.0±6.1% longer than the length along the laminae, and 8.7±7.1% longer than the length along the spinous processes, and this differed significantly from controls (−2.7±2.4%, −7.4±5.2%, and +0.7±7.8%; p<.001). The absolute height of the osseous parts did not differ significantly between AIS and controls in the midsagittal plane. In contrast, the intervertebral structures contributed significantly to the observed length discrepancies. In absolute lengths, the anterior side of the disc of the thoracic curve was higher in AIS (5.4±0.8 mm) than controls (4.8±1.0 mm; p<.001), whereas the interspinous space was smaller in AIS (12.3±1.4 mm vs. 14.0±1.6 mm; p<.001). Conclusions: Based on this in vivo analysis, the true three-dimensional anterior-posterior length discrepancy of AIS curves was found to occur through both anterior column lengthening and posterior column shortening, with the facet joints functioning as the fulcrum. The vertebrae contribute partly to the anterior-posterior length discrepancy accompanied by more significant and possibly secondary increased anterior intervertebral discs height

    Anterior-posterior length discrepancy of the spinal column in adolescent idiopathic scoliosis—a 3D CT study

    No full text
    Background Context: One of the characteristics of reported observations in adolescent idiopathic scoliosis (AIS) is that the thoracic spine is longer anteriorly than posteriorly, more pronounced around the apex than the transitional zones. This reversal of the normal kyphotic anatomy of the thoracic spine is related to questions of etiopathogenesis of AIS. The changes in the anatomy of the anterior column have been described rather in detail; however, the role of the posterior spinal column and the laminae has so far not been elucidated. If the posterior column exhibits a longitudinal growth disturbance, it could act as a tether, leading to a more or less normal anterior column with a deformed and shorter posterior aspect of the spine. So far, it has remained unclear whether this anterior-posterior length discrepancy is the result of relative anterior lengthening or relative posterior shortening, and which tissues (bone, disc, intervertebral soft tissue) are involved. Purpose: The present study aimed to compare the discrepancy of the anterior-posterior length of the spinal column in the “true” midsagittal plane of each vertebra in patients with idiopathic scoliosis versus controls, using three-dimensional computed tomography (CT) scans. Study Design/Setting: This is a cross-sectional study. Patient Sample: The sample consisted of computed tomography scans of 80 patients with moderate to severe AIS (Cobb angle: 46°–109°) before scoliosis navigation surgery and 30 non-scoliotic age-matched controls. Outcome Measures: The height of the osseous and non-osseous structures from anterior to posterior in the “true” midsagittal plane has been determined: the anterior side of the vertebral body and disc, the posterior side of the vertebral body and disc, the lamina and interlaminar space and the spinous process and interspinous space, as well as the height ratios between the anterior column and posterior structures of the primary thoracic and lumbar AIS curves and corresponding levels in non-scoliotic controls. Methods: Semiautomatic software was used to reconstruct and measure the parameters in the true midsagittal plane of each vertebra and intervertebral structure that are rotated and tilted in a different way. Results: In AIS, the anterior height of the thoracic curve was 3.6±2.8% longer than the posterior height, 2.0±6.1% longer than the length along the laminae, and 8.7±7.1% longer than the length along the spinous processes, and this differed significantly from controls (−2.7±2.4%, −7.4±5.2%, and +0.7±7.8%; p<.001). The absolute height of the osseous parts did not differ significantly between AIS and controls in the midsagittal plane. In contrast, the intervertebral structures contributed significantly to the observed length discrepancies. In absolute lengths, the anterior side of the disc of the thoracic curve was higher in AIS (5.4±0.8 mm) than controls (4.8±1.0 mm; p<.001), whereas the interspinous space was smaller in AIS (12.3±1.4 mm vs. 14.0±1.6 mm; p<.001). Conclusions: Based on this in vivo analysis, the true three-dimensional anterior-posterior length discrepancy of AIS curves was found to occur through both anterior column lengthening and posterior column shortening, with the facet joints functioning as the fulcrum. The vertebrae contribute partly to the anterior-posterior length discrepancy accompanied by more significant and possibly secondary increased anterior intervertebral discs height

    International collaboration to assess the risk of Guillain Barre Syndrome following Influenza A (H1N1) 2009 monovalent vaccines

    No full text
    <p>Background: The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barre syndrome (GBS), which has been an influenza vaccine safety concern since the swine flu pandemic of 1976, using a common protocol among high and middle-income countries. The primary objective of this project was to demonstrate the feasibility and utility of global collaboration in the assessment of vaccine safety, including countries both with and without an established infrastructure for vaccine active safety surveillance. A second objective, included a priori, was to assess the risk of GBS following pH1N1 vaccination.</p><p>Methods: The primary analysis used the self-controlled case series (SCCS) design to estimate the relative incidence (RI) of GBS in the 42 days following vaccination with pH1N1 vaccine in a pooled analysis across databases and in analysis using a meta-analytic approach.</p><p>Results: We found a relative incidence of GBS of 2.42(95% CI 1.58-3.72) in the 42 days following exposure to pH1N1 vaccine in analysis of pooled data and 2.09(95% CI 1.28-3.42) using the meta-analytic approach.</p><p>Conclusions: This study demonstrates that international collaboration to evaluate serious outcomes using a common protocol is feasible. The significance and consistency of our findings support a conclusion of an association between 2009 H1N1 vaccination and GBS. Given the rarity of the event the relative incidence found does not provide evidence in contradiction to international recommendations for the continued use of influenza vaccines. (C) 2013 Elsevier Ltd. All rights reserved.</p>
    corecore