597 research outputs found

    Dominant mutations of the Notch ligand Jagged1 cause peripheral neuropathy

    Get PDF
    Notch signaling is a highly conserved intercellular pathway with tightly regulated and pleiotropic roles in normal tissue development and homeostasis. Dysregulated Notch signaling has also been implicated in human disease, including multiple forms of cancer, and represents an emerging therapeutic target. Successful development of such therapeutics requires a detailed understanding of potential on-target toxicities. Here, we identify autosomal dominant mutations of the canonical Notch ligand Jagged1 (or JAG1) as a cause of peripheral nerve disease in 2 unrelated families with the hereditary axonal neuropathy Charcot-Marie-Tooth disease type 2 (CMT2). Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Our studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Together, our findings highlight a critical role for JAG1 in maintaining peripheral nerve integrity, particularly in the recurrent laryngeal nerve, and provide a basis for the evaluation of peripheral neuropathy as part of the clinical development of Notch pathway–modulating therapeutics

    The presence of tumour-associated lymphocytes confers a good prognosis in pancreatic ductal adenocarcinoma: an immunohistochemical study of tissue microarrays

    Get PDF
    Background Tumour-associated lymphocytes (TALs) have been linked with good prognosis in several solid tumours. This study aimed to evaluate the prognostic significance of CD3, CD8 and CD20 positive lymphocytes in pancreatic ductal adenocarcinoma. Methods After histological re-evaluation of the tumours of 81 patients who underwent surgical resection for exclusively pancreatic ductal adenocarcinoma, tissue micro-arrays (TMA) were constructed and immunohistochemistry was performed for CD3, CD8 and CD20. The number of lymphocytes within specific tumour compartments (i.e. stromal and intratumoural) was quantified. X-tile software (Yale School of Medicine, CT, USA) was used to stratify patients into 'high’ and 'low’ for each of the lymphocytes stained and their association with survival. Receiver operating curves (ROC) were constructed to evaluate the association between the TALs, alone and in combination, with clinicopathological features. Results CD3 and CD8 positive lymphocytes were associated with grade of tumour differentiation. The presence of intratumoural CD3 positive cells was associated with improved survival (p = 0.028), and intratumoural and stromal CD3 in combination also correlated with improved survival (p = 0.043). When CD20 positive lymphocyte levels were high, survival improved (p = 0.029) and similar results were seen for CD20 in combination with intratumoural CD3 (p = 0.001) and stromal CD8 (p = 0.013). Conclusions This study has shown a correlation between the presence of TALs and survival in pancreatic ductal adenocarcinoma

    5-Hydroxymethylcytosine is a predominantly stable DNA modification.

    Get PDF
    5-Hydroxymethylcytosine (hmC) is an oxidation product of 5-methylcytosine which is present in the deoxyribonucleic acid (DNA) of most mammalian cells. Reduction of hmC levels in DNA is a hallmark of cancers. Elucidating the dynamics of this oxidation reaction and the lifetime of hmC in DNA is fundamental to understanding hmC function. Using stable isotope labelling of cytosine derivatives in the DNA of mammalian cells and ultrasensitive tandem liquid-chromatography mass spectrometry, we show that the majority of hmC is a stable modification, as opposed to a transient intermediate. In contrast with DNA methylation, which occurs immediately during replication, hmC forms slowly during the first 30 hours following DNA synthesis. Isotopic labelling of DNA in mouse tissues confirmed the stability of hmC in vivo and demonstrated a relationship between global levels of hmC and cell proliferation. These insights have important implications for understanding the states of chemically modified DNA bases in health and disease.We would like to acknowledge the CRUK CI Flow Cytometry and Histopathology/ISH core facilities for their contributions, David Oxley, Clive d’Santos and Donna Michelle-Smith for their support with mass spectrometry, Xiangang Zou for his help with mES cells and David Tannahill for critical reading of the manuscript. This work was funded by Cancer Research UK (all authors) and the Wellcome Trust Senior Investigator Award (S.B.).This is the accepted manuscript. The final version is available from Nature Chemistry at http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.2064.html

    CXCR6, a Newly Defined Biomarker of Tissue-Specific Stem Cell Asymmetric Self-Renewal, Identifies More Aggressive Human Melanoma Cancer Stem Cells

    Get PDF
    Background: A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs) from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+. Conclusions/Significance: The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment

    Transcriptional regulation of the cinnamyl alcohol dehydrogenase gene from sweetpotato in response to plant developmental stage and environmental stress

    Get PDF
    Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in the biosynthesis of lignin. We have isolated full length of a cDNA encoding CAD (IbCAD1) that was previously identified as the most abundant gene in an EST library of sweetpotato suspension cells. Phylogenetic analysis revealed that IbCAD1 belongs to the family of defense-related CADs. High levels of IbCAD1 mRNA were found in the roots of sweetpotato, but not in the leaves and petioles. The IbCAD1 gene transcripts were highly induced by cold, wounding, and reactive oxygen species. Analyses of transcriptional regulation of the IbCAD1 gene in transgenic tobacco plants carrying the IbCAD1 promoter–GUS revealed that IbCAD1 promoter expression was strong in the roots, but barely detectable in the cotyledons. IbCAD1 promoter activity increased with increasing root age, and strong promoter expression was observed in the lateral root emergence sites and in root tips. Weak GUS expression was observed in lignified tissues of vascular system of mature leaves and stems. IbCAD1 promoter activity was strongly induced in response to the biotic and abiotic stresses, with the strongest inducer being wounding, and was also induced by salicylic acid (SA) and jasmonic acid (JA) as well as by abscisic acid (ABA) and 6-benzylaminopurine. Taken together, our data suggest that IbCAD1 can be involved in JA- and SA-mediated wounding response and ABA-mediated cold response, respectively. The IbCAD1 gene may play a role in the resistance mechanism to biotic and abiotic stresses as well as in tissue-specific developmental lignification

    Interaction between COMT rs5993883 and second generation antipsychotics is linked to decreases in verbal cognition and cognitive control in bipolar disorder

    Get PDF
    Abstract Background Second generation antipsychotics (SGAs) are increasingly utilized in Bipolar Disorder (BD) but are potentially associated with cognitive side effects. Also linked to cognitive deficits associated with SGA-treatment are catechol-O-methyltransferase (COMT) gene variants. In this study, we examine the relationship between cognition in SGA use and COMT rs5993883 in cohort sample of subjects with BD. Methods Interactions between SGA-treatment and COMT rs5993883 genotype on cognition was tested using a battery of neuropsychological tests performed in cross-sectional study of 246 bipolar subjects. Results The mean age of our sample was 40.15 years and was comprised of 70 % female subjects. Significant demographic differences included gender, hospitalizations, benzodiazepine/antidepressant use and BD-type diagnosis. Linear regressions showed that the COMT rs5993883 GG genotype predicted lower verbal learning (p = 0.0006) and memory (p = 0.0026) scores, and lower scores on a cognitive control task (p = 0.004) in SGA-treated subjects. Interestingly, COMT GT- or TT-variants showed no intergroup cognitive differences. Further analysis revealed an interaction between SGA-COMT GG-genotype for verbal learning (p = 0.028), verbal memory (p = 0.026) and cognitive control (p = 0.0005). Conclusions This investigation contributes to previous work demonstrating links between cognition, SGA-treatment and COMT rs5993883 in BD subjects. Our analysis shows significant associations between cognitive domains such as verbal-cognition and cognitive control in SGA-treated subjects carrying the COMT rs5993883 GG-genotype. Prospective studies are needed to evaluate the clinical significance of these findings.http://deepblue.lib.umich.edu/bitstream/2027.42/134550/1/40359_2016_Article_118.pd
    corecore