69 research outputs found

    Surface Area of Carbon Nanoparticles: A Dose Metric for a More Realistic Ecotoxicological Assessment

    Get PDF
    Engineered nanoparticles such as graphenes, nanodiamonds, and carbon nanotubes correspond to different allotropes of carbon and are among the best candidates for applications in fast-growing nanotechnology. It is thus likely that they may get into the environment at each step of their life cycle: production, use, and disposal. The aquatic compartment concentrates pollutants and is expected to be especially impacted. The toxicity of a compound is conventionally evaluated using mass concentration as a quantitative measure of exposure. However, several studies have highlighted that such a metric is not the best descriptor at the nanoscale. Here we compare the inhibition of Xenopus laevis larvae growth after in vivo exposure to different carbon nanoparticles for 12 days using different dose metrics and clearly show that surface area is the most relevant descriptor of toxicity for different types of carbon allotropes

    Fabrication Process Independent And Robust Aggregation Of Detonation Nanodiamonds In Aqueous Media

    Get PDF
    In the past detonation nanodiamonds (DNDs), sized 3–5 nm, have been praised for their colloidal stability in aqueous media, thereby attracting vast interest in a wide range of applications including nanomedicine. More recent studies have challenged the consensus that DNDs are monodispersed after their fabrication process, with their aggregate formation dynamics poorly understood. Here we reveal that DNDs in aqueous solution, regardless of their post-synthesis de-agglomeration and purification methods, exhibit hierarchical aggregation structures consisting of chain-like and cluster aggregate morphologies. With a novel characterization approach combining machine learning with direct cryo-transmission electron microscopy and with X-ray scattering and vibrational spectroscopy, we show that their aggregate morphologies of chain and cluster ratios and the corresponding size and fractal dimension distributions vary with the post-synthesis treatment methods. In particular DNDs with positive ζ-potential form to a hierarchical structure that assembles aggregates into large networks. DNDs purified with the gas phase annealing and oxidation tend to have more chain-like aggregates. Our findings provide important contribution in understanding the DND interparticle interactions to control the size, polydispersity and aggregation of DNDs for their desired applications

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Oxidized Detonation Nanodiamonds Act as an Efficient Metal‐Free Photocatalyst to Produce Hydrogen Under Solar Irradiation

    No full text
    Herein, it is revealed for the first time that oxidized detonation nanodiamonds (Ox‐DND) can produce hydrogen under solar irradiation without addition of cocatalyst or formation of heterojunction with another semiconductor. This hydrogen production is investigated using two sacrificial reagents and compared to the one of hydrogenated detonation nanodiamonds (H‐DND). The effect of the Ox‐DND and sacrificial reagent concentrations on the hydrogen production is also studied. At its maximum, a H2 production yield of 32 μmol h−1 is obtained for a Ox‐DND concentration of 12.5 μg mL−1 (using only 1 vol% of triethanolamine as sacrificial reagent), similar to the one of TiO2 nanoparticles tested at the same concentration in the same illumination conditions

    Oxidized detonation nanodiamonds act as an efficient metal‐free photocatalyst to produce hydrogen under solar irradiation

    No full text
    International audienceHerein, it is revealed for the first time that oxidized detonation nanodiamonds (Ox‐DND) can produce hydrogen under solar irradiation without addition of cocatalyst or formation of heterojunction with another semiconductor. This hydrogen production is investigated using two sacrificial reagents and compared to the one of hydrogenated detonation nanodiamonds (H‐DND). The effect of the Ox‐DND and sacrificial reagent concentrations on the hydrogen production is also studied. At its maximum, a H2_2 production yield of 32 μmol h1^{−1} is obtained for a Ox‐DND concentration of 12.5 μg mL1^{−1} (using only 1 vol% of triethanolamine as sacrificial reagent), similar to the one of TiO2_2 nanoparticles tested at the same concentration in the same illumination conditions
    corecore