9 research outputs found

    Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon

    Get PDF
    Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devicesÂč. By offering fast charging and discharging rates, and the ability to sustain millions of ÂČ⁻⁔, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s⁻Âč, which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several micrometre-thick layer of nanostructured carbon onions⁶‚⁷ with diameters of 6-7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications

    Vers l'autonomie énergétique des réseaux de capteurs embarqués : conception et intégration d'un générateur piézoélectrique et d'un micro dispositif de stockage capacitif en technologie silicium

    No full text
    Wireless sensor networks offer very interesting possibilities for structural health monitoring, especially on aircrafts. However the sensors in these networks only have limited onboard energy resources, which is a severe restriction to their autonomy over a wide lifespan. As electronic and sensors power consumption reduces, a possible ? and explored by many research teams for the last decade ? solution is to harvest energy from the immediate environment of the microsystem, to store it and use it when needed to supply the sensor and electronics. In this thesis we propose to harvest energy from engine vibrations on an aircraft structure to supply a structure health monitoring sensor. Our contribution lies in the conception and integration on Silicon of a miniature piezoelectric harvester and capacitive charge storage device. As for the piezoelectric harvester, a proposed finite elements analysis coupled with a SPICE description of the charge circuit enabled the design of an optimized device, which is made of 4 monomorphic cantilevers (Si/PZT) that can generate > ?W power and > V voltage despite low power incoming vibrations (0.1 to 0.5g @ 40-80 Hz). This device has been fabricated on a silicon wafer using standard MEMS technologies and femtosecond LASER etching of the cantilevers. The charge storage device, designed and integrated onto silicon, is an electrochemical double layer capacitor. Development of the geometry of the electrodes, the active material deposition and hermetic wafer level sealing under water-free atmosphere of the component have been led. A VHDL-AMS model of both micro-devices (harvester and charge storage) is proposed and systems simulations over simple use cases are compared to the experiment.Les rĂ©seaux de capteurs communiquant sans fil offrent des possibilitĂ©s extrĂȘmement intĂ©ressantes pour l'application de surveillance de santĂ© de structures, et particuliĂšrement dans le secteur aĂ©ronautique. Cependant les capteurs qui constituent chaque noeud du rĂ©seau ne disposent pas de ressources Ă©nergĂ©tiques permanentes et leur autonomie Ă©nergĂ©tique sur de longues pĂ©riodes est un problĂšme. Avec la rĂ©duction de la consommation des composants Ă©lectroniques et des capteurs, une solution possible et explorĂ©e depuis une dizaine d'annĂ©es par nombreuses Ă©quipes consiste Ă  rĂ©cupĂ©rer l'Ă©nergie disponible dans son environnement, de la stocker et la gĂ©rer pour alimenter le capteur. Nous proposons dans cette thĂšse d'exploiter le potentiel Ă©nergĂ©tique des vibrations mĂ©caniques d'une structure aĂ©ronautique pour alimenter un capteur de surveillance de santĂ© de structure aĂ©ronautique. Notre contribution porte sur la conception et l'intĂ©gration sur silicium d'un gĂ©nĂ©rateur piĂ©zoĂ©lectrique miniature et d'un micro dispositif de stockage capacitif. Concernant le gĂ©nĂ©rateur piĂ©zoĂ©lectrique, l'Ă©laboration d'un modĂšle Ă  Ă©lĂ©ments finis (COMSOL) couplĂ©es avec une description SPICE du circuit de charge, a permis de concevoir - une structure optimisĂ©e consistant en 4 poutres monomorphes (Si/PZT) capable de gĂ©nĂ©rer des puissance Ă©lectrique > ?W et des tension > V en dĂ©pit de puissance mĂ©caniques incidentes faibles : vibrations de 0,1g-0,5g @40-80 Hz. Ce dispositif a ensuite Ă©tĂ© rĂ©alisĂ© sur silicium Ă  l'aide de technologies MEMS et de l'usinage laser femtoseconde. Le dispositif de stockage conçu et intĂ©grĂ© sur silicium est un condensateur Ă  double couche Ă©lectrochimique. Les diffĂ©rentes briques technologiques dĂ©veloppĂ©es concernent l'optimisation des gĂ©omĂ©tries d'Ă©lectrodes, le dĂ©pĂŽt de la matiĂšre active et l'encapsulation hermĂ©tique de l'Ă©lectrolyte organique en atmosphĂšre anhydre. Un modĂšle VHDL-AMS des deux Ă©lĂ©ments (rĂ©cupĂ©rateur et stockage) rĂ©alisĂ©s est proposĂ© et une simulation du systĂš me sur un cas d'utilisation simple est comparĂ©e Ă  l'expĂ©rience

    Vers l'autonomie énergétique des réseaux de capteurs embarqués : conception et intégration d'un générateur piézoélectrique et d'un micro dispositif de stockage capacitif en technologie silicium

    Get PDF
    Wireless sensor networks offer very interesting possibilities for structural health monitoring, especially on aircrafts. However the sensors in these networks only have limited onboard energy resources, which is a severe restriction to their autonomy over a wide lifespan. As electronic and sensors power consumption reduces, a possible ? and explored by many research teams for the last decade ? solution is to harvest energy from the immediate environment of the microsystem, to store it and use it when needed to supply the sensor and electronics. In this thesis we propose to harvest energy from engine vibrations on an aircraft structure to supply a structure health monitoring sensor. Our contribution lies in the conception and integration on Silicon of a miniature piezoelectric harvester and capacitive charge storage device. As for the piezoelectric harvester, a proposed finite elements analysis coupled with a SPICE description of the charge circuit enabled the design of an optimized device, which is made of 4 monomorphic cantilevers (Si/PZT) that can generate > ?W power and > V voltage despite low power incoming vibrations (0.1 to 0.5g @ 40-80 Hz). This device has been fabricated on a silicon wafer using standard MEMS technologies and femtosecond LASER etching of the cantilevers. The charge storage device, designed and integrated onto silicon, is an electrochemical double layer capacitor. Development of the geometry of the electrodes, the active material deposition and hermetic wafer level sealing under water-free atmosphere of the component have been led. A VHDL-AMS model of both micro-devices (harvester and charge storage) is proposed and systems simulations over simple use cases are compared to the experiment.Les rĂ©seaux de capteurs communiquant sans fil offrent des possibilitĂ©s extrĂȘmement intĂ©ressantes pour l'application de surveillance de santĂ© de structures, et particuliĂšrement dans le secteur aĂ©ronautique. Cependant les capteurs qui constituent chaque noeud du rĂ©seau ne disposent pas de ressources Ă©nergĂ©tiques permanentes et leur autonomie Ă©nergĂ©tique sur de longues pĂ©riodes est un problĂšme. Avec la rĂ©duction de la consommation des composants Ă©lectroniques et des capteurs, une solution possible et explorĂ©e depuis une dizaine d'annĂ©es par nombreuses Ă©quipes consiste Ă  rĂ©cupĂ©rer l'Ă©nergie disponible dans son environnement, de la stocker et la gĂ©rer pour alimenter le capteur. Nous proposons dans cette thĂšse d'exploiter le potentiel Ă©nergĂ©tique des vibrations mĂ©caniques d'une structure aĂ©ronautique pour alimenter un capteur de surveillance de santĂ© de structure aĂ©ronautique. Notre contribution porte sur la conception et l'intĂ©gration sur silicium d'un gĂ©nĂ©rateur piĂ©zoĂ©lectrique miniature et d'un micro dispositif de stockage capacitif. Concernant le gĂ©nĂ©rateur piĂ©zoĂ©lectrique, l'Ă©laboration d'un modĂšle Ă  Ă©lĂ©ments finis (COMSOL) couplĂ©es avec une description SPICE du circuit de charge, a permis de concevoir - une structure optimisĂ©e consistant en 4 poutres monomorphes (Si/PZT) capable de gĂ©nĂ©rer des puissance Ă©lectrique > ?W et des tension > V en dĂ©pit de puissance mĂ©caniques incidentes faibles : vibrations de 0,1g-0,5g @40-80 Hz. Ce dispositif a ensuite Ă©tĂ© rĂ©alisĂ© sur silicium Ă  l'aide de technologies MEMS et de l'usinage laser femtoseconde. Le dispositif de stockage conçu et intĂ©grĂ© sur silicium est un condensateur Ă  double couche Ă©lectrochimique. Les diffĂ©rentes briques technologiques dĂ©veloppĂ©es concernent l'optimisation des gĂ©omĂ©tries d'Ă©lectrodes, le dĂ©pĂŽt de la matiĂšre active et l'encapsulation hermĂ©tique de l'Ă©lectrolyte organique en atmosphĂšre anhydre. Un modĂšle VHDL-AMS des deux Ă©lĂ©ments (rĂ©cupĂ©rateur et stockage) rĂ©alisĂ©s est proposĂ© et une simulation du systĂš me sur un cas d'utilisation simple est comparĂ©e Ă  l'expĂ©rience

    Read Your Voice - A Playful Interactive Sound Encoder/Decoder

    No full text
    International audienceRead Your Voice is a playful interactive multimedia system that allows the user to record a sound, encode it as an image, and then play it back using his smartphone, while controlling the speed and direction of playback

    Read Your Voice - A Playful Interactive Sound Encoder/Decoder

    No full text
    International audienceRead Your Voice is a playful interactive multimedia system that allows the user to record a sound, encode it as an image, and then play it back using his smartphone, while controlling the speed and direction of playback

    Wafer-level fabrication process for fully encapsulated micro-supercapacitors with high specific energy

    Get PDF
    International audienceIn this paper a wafer-level process is proposed to fully integrate carbon-based micro-supercapacitor onto silicon substrate. This process relies on the deposition of a paste containing carbon, PVDF and acetone into cavities etched in silicon. After electrolyte deposition in a controlled atmosphere, a wafer-level encapsulation is realized. Cyclic voltammetry performed on non-encapsulated microcomponents showed specific energy of 257 mJ cm-2 for 336 lm deep cavities. The specific encapsulation process developed was tested separately and proved to be efficient in terms of resistance to organic electrolytes and mechanical strength

    Elaboration of a Microstructured Inkjet-Printed Carbon Electrochemical Capacitor

    Get PDF
    International audienceCarbon-based micro-supercapacitors dedicated to energy storage in self-powered modules were fabricated with inkjet printing technology on silicon substrate. An ink was first prepared by mixing an activated carbon powder with a PTFE polymer binder in ethylene glycol stabilized with a surfactant then deposited by inkjet on patterned gold current collectors with the substrate heated at 140°C in order to assure a good homogeneity. Electrochemical micro-capacitors with electrodes in an interdigitated configuration (40 ”m wide (w), 400 ”m long (L) and 40 ”m interspace (i)) were fabricated, and characterized using electrochemical techniques in 1 M Et4NBF4 propylene carbonate electrolyte. These micro-devices show an excellent capacitive behavior over a wide potential range of 2.5 V for a specific capacitance per electrode of 5.1 mF.cm-2. The newly developed technology will allow the integration of the storage device as close as possible to the MEMS-based energy harvesting device, minimizing power losses through connections
    corecore