18,257 research outputs found
Quantum key distribution over 122 km of standard telecom fiber
We report the first demonstration of quantum key distribution over a standard
telecom fiber exceeding 100 km in length. Through careful optimisation of the
interferometer and single photon detector, we achieve a quantum bit error ratio
of 8.9% for a 122km link, allowing a secure shared key to be formed after error
correction and privacy amplification. Key formation rates of up to 1.9 kbit/sec
are achieved depending upon fiber length. We discuss the factors limiting the
maximum fiber length in quantum cryptography
Mock-Gaussian Behaviour for Linear Statistics of Classical Compact Groups
We consider the scaling limit of linear statistics for eigenphases of a
matrix taken from one of the classical compact groups. We compute their moments
and find that the first few moments are Gaussian, whereas the limiting
distribution is not. The precise number of Gaussian moments depends upon the
particular statistic considered
Track-based improvement in the jet transverse momentum resolution for ATLAS
We present a track-based method for improving the jet momentum resolution in ATLAS. Information is added to the reconstructed jet after the standard jet energy scale corrections have been applied. Track-based corrections are implemented, and a 10 â 15% improvement in the jet transverse momentum resolution at low pT is achieved. The method is explained, and some validation and physics results are presented. Additional variables are described and analyzed for their resolution improvement potential
Functional Electrical Stimulation mediated by Iterative Learning Control and 3D robotics reduces motor impairment in chronic stroke
Background: Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods: Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results: From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions: The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this
A novel metric for coronal MHD models
[1] In the interest of quantitatively assessing the capabilities of coronal MHD models, we have developed a metric that compares the structures of the white light corona observed with SOHO LASCO C2 to model predictions. The MAS model is compared to C2 observations from two Carrington rotations during solar cycle 23, CR1913 and CR1984, which were near the minimum and maximum of solar activity, respectively, for three radial heights, 2.5 R⊙, 3.0 R⊙, and 4.5 R⊙. In addition to simulated polarization brightness images, we create a synthetic image based on the field topology along the line of sight in the model. This open-closed brightness is also compared to LASCO C2 after renormalization. In general, the model\u27s magnetic structure is a closer match to observed coronal structures than the model\u27s density structure. This is expected from the simplified energy equations used in current global corona MHD models
Exact eigenvalue spectrum of a class of fractal scale-free networks
The eigenvalue spectrum of the transition matrix of a network encodes
important information about its structural and dynamical properties. We study
the transition matrix of a family of fractal scale-free networks and
analytically determine all the eigenvalues and their degeneracies. We then use
these eigenvalues to evaluate the closed-form solution to the eigentime for
random walks on the networks under consideration. Through the connection
between the spectrum of transition matrix and the number of spanning trees, we
corroborate the obtained eigenvalues and their multiplicities.Comment: Definitive version accepted for publication in EPL (Europhysics
Letters
FliPpr: A Prettier Invertible Printing System
When implementing a programming language, we often write
a parser and a pretty-printer. However, manually writing both programs
is not only tedious but also error-prone; it may happen that a pretty-printed
result is not correctly parsed. In this paper, we propose FliPpr,
which is a program transformation system that uses program inversion
to produce a CFG parser from a pretty-printer. This novel approach
has the advantages of fine-grained control over pretty-printing, and easy
reuse of existing efficient pretty-printer and parser implementations
Asteroid Belts in Debris Disk Twins: VEGA and FOMALHAUT
Vega and Fomalhaut, are similar in terms of mass, ages, and global debris
disk properties; therefore, they are often referred as "debris disk twins". We
present Spitzer 10-35 um spectroscopic data centered at both stars, and
identify warm, unresolved excess emission in the close vicinity of Vega for the
first time. The properties of the warm excess in Vega are further characterized
with ancillary photometry in the mid infrared and resolved images in the
far-infrared and submillimeter wavelengths. The Vega warm excess shares many
similar properties with the one found around Fomalhaut. The emission shortward
of ~30 um from both warm components is well described as a blackbody emission
of ~170 K. Interestingly, two other systems, eps Eri and HR 8799, also show
such an unresolved warm dust using the same approach. These warm components may
be analogous to the solar system's zodiacal dust cloud, but of far greater. The
dust temperature and tentative detections in the submillimeter suggest the warm
excess arises from dust associated with a planetesimal ring located near the
water-frost line and presumably created by processes occurring at similar
locations in other debris systems as well. We also review the properties of the
2 um hot excess around Vega and Fomalhaut, showing that the dust responsible
for the hot excess is not spatially associated with the dust we detected in the
warm belt. We suggest it may arise from hot nano grains trapped in the magnetic
field of the star. Finally, the separation between the warm and cold belt is
rather large with an orbital ratio >~10 in all four systems. In light of the
current upper limits on the masses of planetary objects and the large gap, we
discuss the possible implications for their underlying planetary architecture,
and suggest that multiple, low-mass planets likely reside between the two belts
in Vega and Fomalhaut.Comment: 14 pages, accepted for publication in Ap
Aerosol optical properties during INDOEX based on measured aerosol particle size and composition
The light scattering and light absorption as a function of wavelength and relative humidity due to aerosols measured at the Kaashidhoo Climate Observatory in the Republic of the Maldives during the INDOEX field campaign has been calculated. Using size-segregated measurements of aerosol chemical composition, calculated light scattering and absorption has been evaluated against measurements of light scattering and absorption. Light scattering coefficients are predicted to within a few percent over relative humidities of 20–90%. Single scattering albedos calculated from the measured elemental carbon size distributions and concentrations in conjunction with other aerosol species have a relative error of 4.0% when compared to measured values. The single scattering albedo for the aerosols measured during INDOEX is both predicted and observed to be about 0.86 at an ambient relative humidity of 80%. These results demonstrate that the light scattering, light absorption, and hence climate forcing due to aerosols over the Indian Ocean are consistent with the chemical and physical properties of the aerosol at that location
- …