19 research outputs found

    Physical and Electrochemical Investigations into Blended Electrolytes Containing a Glyme Solvent and Two Bis{(trifluoromethyl)sulfonyl}imide-Based Ionic Liquids

    Get PDF
    International audienceIn this paper, we report on thermophysical and electrochemical investigations of a series of molecular solvent/ionic liquid (IL) binary mixture electrolytes. Tetraethylene glycol dimethyl ether (TEGDME) is utilized as the molecular solvent component in separate mixtures with two bis{(trifluoromethyl)sulfonyl}imide anion based ILs paired with similarly sized cyclic and acyclic alkylammonium cations; 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide, [Pyrr14][TFSI], or N-butyl-N,N-dimethyl-N-ethylammonium bis{(trifluoromethyl)sulfonyl}imide, [N1124][TFSI]. The blending of ILs with select molecular solvents is an important strategy for the improvement of the typically sluggish transport capabilities of these interesting electrolytic solvents. Bulk volumetric and transport properties are reported as a function of temperature and binary mixture formulation; demonstrating the capacity for enhancing desired properties of the IL. Micro-disk electrode voltammetry and chronoamperometry in O2-saturated binary mixture electrolytes was used to assess the effect of formulation on the solubility and diffusivity of the dissolved gas. In addition, further investigations of the behavior of the O2 redox couple at a GC macro-disk electrode are discussed

    Elucidating the hydrotropism behaviour of aqueous caffeine and sodium benzoate solution through NMR and neutron total scattering analysis

    Get PDF
    Hydrotropism is a convenient way to increase the solubility of drugs by up to several orders of magnitude, and even though it has been researched for decades with both experimental and simulation methods, its mechanism is still unknown. Here, we use caffeine/sodium benzoate (CAF-SB) as model system to explore the behaviour of caffeine solubility enhancement in water through NMR spectroscopy and neutron total scattering. 1H NMR shows strong interaction between caffeine and sodium benzoate in water. Neutron total scattering combined with empirical potential structure refinement, a systematic method to study the solution structure, reveals π-stacking between caffeine and the benzoate anion as well as Coulombic interactions with the sodium cation. The strongest hydrogen bond interaction in the system is between benzoate and water, which help dissolve CAF-SB complex and increase the solubility of CAF in water. Besides, the stronger interaction between CAF and water and the distortion of water structure are further mechanisms of the CAF solubility enhancement. It is likely that the variety of mechanisms for hydrotropism shown in this system can be found for other hydrotropes, and NMR spectroscopy and neutron total scattering can be used as complementary techniques to generate a holistic picture of hydrotropic solutions

    Liquid–Liquid Equilibria of Ionic Liquids–Water–Acetic Acid Mixtures

    Get PDF
    International audienceThe liquid–liquid equilibria of ionic liquid-based systems with water and/or acetic acid have been studied at 293.15 K and atmospheric pressure. One hydrophilic ionic liquid and a series of hydrophobic ionic liquids were investigated in order to examine their effect on the separation of water and acetic acid mixtures. The ionic liquids studied were [P666,14]Cl, [P666,14][NTf2], [C4mmim][NTf2], [Cnmim][NTf2] (n = 2, 4, 6, 8, or 10), [C4mpyrr][NTf2], [N1114][NTf2], and [C2mim][EtSO4]. [C2mim][EtSO4] is totally miscible with water and acetic acid in all compositions. Comparing [P666,14]Cl with [P666,14][NTf2], the former showed higher extraction selectivities; however, due to the larger viscosity of [P666,14]Cl, the [NTf2]− based ionic liquids offer a better solvent choice for the liquid extraction processes. As expected, as the solubility of water decreases with increasing the chain length of ionic liquids, this in turn leads to [C10mim][NTf2] showing greater acetic efficiency than [C2mim][NTf2] for the separation of water and acetic acid. The experimental data obtained for ternary systems containing the [C4mmim][NTf2] demonstrated that the modification of the C(2) position on the imidazolium ring does not significantly affect the selectivity compared with [C4mim][NTf2]. Tetraalkyl ammonium and N-alkyl pyrrolidinium based ionic liquids were also studied with the [NTf2]− anion with the results for the system containing the [C4mpyrr][NTf2] demonstrating a higher selectivity for the separation of water and acetic acid than the other [NTf2]− based systems studied. All experimental data were then correlated using the UNIQUAC model within an accuracy close to 1.6%. Finally, the ionic liquids were also compared with standard molecular extraction solvent, for example, methyl tert-butyl ether and methyl isobutyl ketone. The organic solvents showed an advantage over the [Cnmim][NTf2]-based ionic liquids but only over a narrow composition range. In all ionic liquid systems, the selectivity remains high at low acetic acid concentration compared with that found in the organic solvents, which is important for practical operation and demonstrates the advantages of using an ionic liquid for the extraction

    Bulk and Confined Benzene-Cyclohexane Mixtures Studied by an Integrated Total Neutron Scattering and NMR Method

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: accepted 2021-04-10, registration 2021-04-10, pub-electronic 2021-04-23, online 2021-04-23, pub-print 2021-08Publication status: PublishedFunder: Engineering and Physical Sciences Research Council; doi: http://dx.doi.org/10.13039/501100000266; Grant(s): N008995, N009304Abstract: Herein mixtures of cyclohexane and benzene have been investigated in both the bulk liquid phase and when confined in MCM-41 mesopores. The bulk mixtures have been studied using total neutron scattering (TNS), and the confined mixtures have been studied by a new flow-utilising, integrated TNS and NMR system (Flow NeuNMR), all systems have been analysed using empirical potential structure refinement (EPSR). The Flow NeuNMR setup provided precise time-resolved chemical sample composition through NMR, overcoming the difficulties of ensuring compositional consistency for computational simulation of data ordinarily found in TNS experiments of changing chemical composition—such as chemical reactions. Unique to the liquid mixtures, perpendicularly oriented benzene molecules have been found at short distances from the cyclohexane rings in the regions perpendicular to the carbon–carbon bonds. Upon confinement of the hydrocarbon mixtures, a stronger parallel orientational preference of unlike molecular dimers, at short distances, has been found. At longer first coordination shell distances, the like benzene molecular spatial organisation within the mixture has also found to be altered upon confinement

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Solvation structure of hexane/hexene in [C4mim][NTf2] ionic liquid

    No full text
    There are great energy costs associated with the separation of olefins from mixed hydrocarbon gas and liquid feeds. These olefins (obtained from natural gas, biosources, or produced from recycling of waste hydrocarbons) are chemical starting materials for high-demand materials such as PET, PPE, PVC, solvents, lubricants and medications. Ionic liquids have been suggested as low energy intensive absorbent materials that could selectively capture and release these olefins from mixtures without the need to use the expensive and energy intensive separation methods. This study aims to provide important contributions towards the understanding and comparison of hydrocarbon absorption and separations in ionic liquids at a molecular level and in the hydrocarbon gas and liquid phases. In turn this will allow the designing of sorbents with improved performance leading to the evaluation of their use in an industrial setting

    Separation of alcohols from <i>n</i>-tetradecane using 1-ethyl-3-methylimidazolium hydrogensulfate

    No full text
    Extraction of alcohols from n-tetradecane using various extraction solvents has been investigated at a range of temperatures from 295 to 393 K under ambient pressure. On the basis of the experimental liquid&ndash;liquid equilibrium data, the distribution ratio and selectivity were calculated for the extraction of 1-octanol, 1-decanol, and 1-dodecanol (C8&ndash;C12) in 1-ethyl-3-methylimidazolium hydrogensulfate [C2mim][HSO4] and sulfolane. Results showed that moderate selectivities were obtained in sulfolane with very low distribution coefficients. In contrast, [C2mim][HSO4] showed similar selectivity values with higher distribution coefficients. A study of a number of different 1-alcohols (C4&ndash;C12) showed that the decrease in hydrogen bonding compared to the increased van der Waals interactions between n-tetradecane and the higher-chain alcohols decreased the extraction selectivity in [C2mim][HSO4]. Increasing the temperature of the ionic liquid extraction medium resulted in increased chemical extraction for 1-butanol and 1-hexanol due to the formation of the corresponding alkylsulfate ionic liquid. In contrast, the selectivity decreased for 1-octanol, 1-decanol and 1-dodecanol due to the partial dissolution of the corresponding alkylsulfate ionic liquid into the n-tetradecane phase
    corecore