1,950 research outputs found
The therapeutic potential of plant flavonoids on rheumatoid arthritis
Rheumatoid arthritis (RA) is an autoimmune condition that mainly affects peripheral joints. Although immunosuppressive drugs and non-steroidal anti-inflammatory drugs (NSAIDs) are used to treat this condition, these drugs have severe side effects. Flavonoids are the most abundant phenolic compounds which exhibit antioxidant, anti-inflammatory and immunomodulatory properties. Many bioactive flavonoids have powerful anti-inflammatory effects. However, a very few have reached clinical use. Dietary flavonoids have been reported to control joint inflammation and alleviate arthritis symptoms in both human RA and animal models of arthritis. There is little scientific evidence about their mechanism of actions in RA. We review the therapeutic effects of different groups of flavonoids belonging to the most common and abundant groups on RA. In particular, the probable mechanisms of major flavonoids on cells and chemical messengers involved in the inflammatory signalling components of RA are discussed in detail
The use of biorefinery by-products and natural detritus as feed sources for Oysters (Crassostrea gigas) juveniles
New research is currently underway to explore the potential of macroalgae for the production of biofuels. Marine biofuels in general and macroalgae in particular, offer a number of advantages over terrestrial biofuels including reduced competition for freshwater resources and for land use. Sugars can be extracted from macroalgae and processed into biofuels by anaerobic digestion and fermentation. This process generates significant waste biomass, which, if used, could improve the economic sustainability of the biorefinery sector. Bivalves’ aquaculture relies heavily on the production of unicellular algae to feed juvenile individuals and this can represent a bottleneck for the bivalve industry especially in locations where sunlight is limited. Previous research explored the use of macroalgae derived digestate as alternative or integrative feed for juvenile bivalves, exploiting the notion that organic particulate matter (detritus) is an integral part of this animal class natural diet. The prospect of using waste products from the emerging biorefinery industry to solve a bottleneck for aquaculture businesses and, by so doing, improving profitability of both, is an exciting one. In this paper we describe the main nutritional profiles (Protein, Lipid, Carbohydrates and Fatty acids) of the tested diets and investigate the potential for the use of a biorefinery a by-product as replacement option for bivalves’ production, by benchmarking it against aquaculture industry standards (live microalgae and commercially available algae paste) and natural detritus constituted by farmed sea urchin digesta. Both the digestate and the natural detritus supported the survival and growth of bivalve spat, especially when used at 50% inclusion rate, over the course of 4-week preliminary trials. Data suggest that a synergistic effect of the nutritional profiles of the diets employed may underpin the observed results
The effectiveness of individualized morphosyntactic target identification and explicit intervention using the SHAPE CPDING System for children with developmental language disorder and the impact of within-session dosage
PURPOSE: We investigated the effectiveness of a highly individualized morphosyntactic intervention using the SHAPE CODING™ system delivered at different dosages.
METHOD: Eight children with developmental language disorder aged 8;0-10;10 (years;months) received 10 hr of explicit individualized intervention for morphosyntax delivered in 30-min individual sessions once per week for 20 weeks. Following at least four baseline probe tests, two grammatical targets per session received explicit instruction until they reached criterion (90%), when the next target was introduced. To control for session length and teaching episode density, either both targets received 20 teaching episodes per session or one target received 10 teaching episodes and the other 30. Maintenance testing of completed targets was also carried out. RESULTS: Scores on probe tests post-intervention were significantly higher than during the baseline phase (d = 1.6) with no change during the baseline or maintenance phases. However, progress during the intervention phase was highly significant. One participant showed significantly faster progress with intervention, while one (with the lowest attention score) made little progress. When considering progress relative to cumulative intervention sessions, progress was faster with 30 teaching episodes per session and slower with 10. However, when cumulative teaching episodes were used as the predictor, all three within-session dosages showed very similar rates of progress, with the odds of a correct response increasing by 3.9% for each teaching episode. The targets that were achieved required an average of 40-60 teaching episodes.
CONCLUSIONS: With the exception of one participant, the individualized intervention was highly effective and efficient. Thus, the individualized target identification process and intervention method merit further research in a larger group of children. The cumulative number of teaching episodes per target provided across sessions appeared to be key. Thus, clinicians should aim for high teaching episode rates, particularly if the number of sessions is constrained. Otherwise, intervention scheduling can be flexible.
SUPPLEMENTAL MATERIAL: https://doi.org/10.23641/asha.25996168
Absorption Properties of a Porous Organic Crystalline Apohost Formed by a Self-Assembled Bis-Urea Macrocycle
We report herein the characterization and binding properties of a microporous crystalline host formed by the self assembly of a bis-urea macrocycle 1. Bis-urea macrocycle 1 has been designed to crystallize into stacked hollow columns. The self-assembly process is guided primarily by hydrogen bonding and aromatic stacking interactions that yield crystals of filled host 1âacetic acid (AcOH). The AcOH guests are bound in the cylindrical cavities of the crystal. The guest AcOH can be removed by heating to form a stable crystalline apohost 1. Apohost 1 displays a type I gas adsorption isotherm with CO2 that is consistent with an open framework microporous material. Apohost 1 binds a range of small molecule guests with specific stoichiometry. The formation of these inclusion complexes does not destroy the crystal framework and therefore apohost 1 can be reused, much like a zeolite. We investigated the structure of apohost 1 and its inclusion complexes by powder X-ray diffraction. The ability of guests to bind and their stoichiometry could be rationalized on the basis of the size, shape, and polarity of the guest molecules. Finally, the shape selectivity of these self-assembled porous materials was demonstrated in competition studies in which apohost 1 preferentially bound p-xylene from a mixture of xylene isomers
Gravitational Waves from a Compact Star in a Circular, Inspiral Orbit, in the Equatorial Plane of a Massive, Spinning Black Hole, as Observed by LISA
Results are presented from high-precision computations of the orbital
evolution and emitted gravitational waves for a stellar-mass object spiraling
into a massive black hole in a slowly shrinking, circular, equatorial orbit.
The focus of these computations is inspiral near the innermost stable circular
orbit (isco)---more particularly, on orbits for which the angular velocity
Omega is 0.03 < Omega/Omega_{isco} < 1. The computations are based on the
Teukolsky-Sasaki-Nakamura formalism, and the results are tabulated in a set of
functions that are of order unity and represent relativistic corrections to
low-orbital-velocity formulas. These tables can form a foundation for future
design studies for the LISA space-based gravitational-wave mission. A first
survey of applications to LISA is presented: Signal to noise ratios S/N are
computed and graphed as functions of the time-evolving gravitational-wave
frequency for representative values of the hole's mass M and spin a and the
inspiraling object's mass \mu, with the distance to Earth chosen to be r_o = 1
Gpc. These S/N's show a very strong dependence on the black-hole spin, as well
as on M and \mu. A comparison with predicted event rates shows strong promise
for detecting these waves, but not beyond about 1Gpc if the inspiraling object
is a white dwarf or neutron star. This argues for a modest lowering of LISA's
noise floor. A brief discussion is given of the prospects for extracting
information from the observed wavesComment: Physical Review D, in press; 21 pages, 9 figures, 10 tables it is
present in the RevTeX fil
Similarity Regression predicts evolution of transcription factor sequence specificity
Transcription factor (TF) binding specificities (motifs) are essential to the analysis of noncoding DNA and gene regulation. Accurate prediction of the sequence specificities of TFs is critical, because the hundreds of sequenced eukaryotic genomes encompass hundreds of thousands of TFs, and assaying each is currently infeasible. There is ongoing controversy regarding the efficacy of motif prediction methods, as well as the degree of motif diversification among related species. Here, we describe Similarity Regression (SR), a significantly improved method for predicting motifs. We have updated and expanded the Cis-BP database using SR, and validate its predictive capacity with new data from diverse eukaryotic TFs. SR inherently quantifies TF motif evolution, and we show that previous claims of near-complete conservation of motifs between human and Drosophila are grossly inflated, with nearly half the motifs in each species absent from the other. We conclude that diversification in DNA binding motifs is pervasive, and present a new tool and updated resource to study TF diversity and gene regulation across eukaryotes
Population receptive field estimates for motion-defined stimuli.
The processing of motion changes throughout the visual hierarchy, from spatially restricted 'local motion' in early visual cortex to more complex large-field 'global motion' at later stages. Here we used functional magnetic resonance imaging (fMRI) to examine spatially selective responses in these areas related to the processing of random-dot stimuli defined by differences in motion. We used population receptive field (pRF) analyses to map retinotopic cortex using bar stimuli comprising coherently moving dots. In the first experiment, we used three separate background conditions: no background dots (dot-defined bar-only), dots moving coherently in the opposite direction to the bar (kinetic boundary) and dots moving incoherently in random directions (global motion). Clear retinotopic maps were obtained for the bar-only and kinetic-boundary conditions across visual areas V1-V3 and in higher dorsal areas. For the global-motion condition, retinotopic maps were much weaker in early areas and became clear only in higher areas, consistent with the emergence of global-motion processing throughout the visual hierarchy. However, in a second experiment we demonstrate that this pattern is not specific to motion-defined stimuli, with very similar results for a transparent-motion stimulus and a bar defined by a static low-level property (dot size) that should have driven responses particularly in V1. We further exclude explanations based on stimulus visibility by demonstrating that the observed differences in pRF properties do not follow the ability of observers to localise or attend to these bar elements. Rather, our findings indicate that dorsal extrastriate retinotopic maps may primarily be determined by the visibility of the neural responses to the bar relative to the background response (i.e. neural signal-to-noise ratios) and suggests that claims about stimulus selectivity from pRF experiments must be interpreted with caution
Quantum computation over continuous variables
This paper provides necessary and sufficient conditions for constructing a
universal quantum computer over continuous variables. As an example, it is
shown how a universal quantum computer for the amplitudes of the
electromagnetic field might be constructed using simple linear devices such as
beam-splitters and phase shifters, together with squeezers and nonlinear
devices such as Kerr-effect fibers and atoms in optical cavities. Such a device
could in principle perform `quantum floating point' computations. Problems of
noise, finite precision, and error correction are discussed.Comment: 9 pages, Te
- …