1,173 research outputs found

    O-6 Optical Property Degradation of the Hubble Space Telescope's Wide Field Camera-2 Pick Off Mirror

    Get PDF
    Degradation in the performance of optical components can be greatly affected by exposure to the space environment. Many factors can contribute to such degradation including surface contaminants; outgassing; vacuum, UV, and atomic oxygen exposure; temperature cycling; or combinations of parameters. In-situ observations give important clues to degradation processes, but there are relatively few opportunities to correlate those observations with post-flight ground analyses. The return of instruments from the Hubble Space Telescope (HST) after its final servicing mission in May 2009 provided such an opportunity. Among the instruments returned from HST was the Wide-Field Planetary Camera-2 (WFPC-2), which had been exposed to the space environment for 16 years. This work focuses on the identifying the sources of degradation in the performance of the Pick-off mirror (POM) from WFPC-2. Techniques including surface reflectivity measurements, spectroscopic ellipsometry, FTIR (and ATR-FTIR) analyses, SEM/EDS, X-ray photoelectron spectroscopy (XPS) with and without ion milling, and wet and dry physical surface sampling were performed. Destructive and contact analyses took place only after completion of the non-destructive measurements. Spectroscopic ellipsometry was then repeated to determine the extent of contaminant removal by the destructive techniques, providing insight into the nature and extent of polymerization of the contaminant layer

    Assessing Medical Students’, Residents’, and the Public's Perceptions of the Uses of Personal Digital Assistants

    Get PDF
    Although medical schools are encouraging the use of personal digital assistants (PDAs), there have been few investigations of attitudes toward their use by students or residents and only one investigation of the public's attitude toward their use by physicians. In 2006, the University of Louisville School of Medicine surveyed 121 third- and fourth-year medical students, 53 residents, and 51 members of the non-medical public about their attitudes toward PDAs. Students were using either the Palm i705 or the Dell Axim X50v; residents were using devices they selected themselves (referred to in the study generically as PDAs). Three survey instruments were designed to investigate attitudes of (a) third- and fourth-year medical students on clinical rotations, (b) Internal Medicine and Pediatrics residents, and (c) volunteer members of the public found in the waiting rooms of three university practice clinics. Both residents and medical students found their devices useful, with more residents (46.8%) than students (16.2%) (p < 0.001) rating PDAs “very useful.” While students and residents generally agreed that PDAs improved the quality of their learning, residents’ responses were significantly higher (p < 0.05) than students’. Residents also responded more positively than students that PDAs made them more effective as clinicians. Although members of the public were generally supportive of PDA use, they appeared to have some misconceptions about how and why physicians were using them. The next phase of research will be to refine the research questions and survey instruments in collaboration with another medical school

    The return of the merging galaxy subclusters of El Gordo?

    Full text link
    Merging galaxy clusters with radio relics provide rare insights to the merger dynamics as the relics are created by the violent merger process. We demonstrate one of the first uses of the properties of the radio relic to reduce the uncertainties of the dynamical variables and determine the 3D configuration of a cluster merger, ACT-CL J0102-4915, nicknamed El Gordo. From the double radio relic observation and the X-ray observation of a comet-like gas morphology induced by motion of the cool core, it is widely believed that El Gordo is observed shortly after the first core-passage of the subclusters. We employ a Monte Carlo simulation to investigate the three-dimensional (3D) configuration and dynamics of El Gordo. Using the polarization fraction of the radio relic, we constrain the estimate of the angle between the plane of the sky and the merger axis to be α=21 degree±119\alpha = 21~{\rm degree} \pm^9_{11}. We find the relative 3D merger speed of El Gordo to be 2400±200400 km s12400\pm^{400}_{200}~{\rm km}~{\rm s}^{-1} at pericenter. The two possible estimates of the time-since-pericenter are 0.46±0.160.090.46\pm^{0.09}_{0.16} Gyr and 0.91±0.390.220.91\pm^{0.22}_{0.39} Gyr for the outgoing and returning scenario respectively. We put our estimates of the time-since-pericenter into context by showing that if the time-averaged shock velocity is approximately equal to or smaller than the pericenter velocity of the corresponding subcluster in the center of mass frame, the two subclusters are more likely to be moving towards, rather than away, from each other, post apocenter. We compare and contrast the merger scenario of El Gordo with that of the Bullet Cluster, and show that this late-stage merging scenario explains why the southeast dark matter lensing peak of El Gordo is closer to the merger center than the southeast cool core.Comment: Figure 1 explains the configuration of the different components of El Gordo. Figure 9 explains the merger scenario. 20 pages, 23 figures. Accepted by MNRA

    Association between STI and child sexual exploitation in children under 16 years old attending sexual health clinics in England: findings from a case–control study.

    Get PDF
    OBJECTIVE: Child sexual exploitation (CSE) can be difficult to identify, as there may be few reliable indicators. Although they may be used in decision-making, there is no evidence that STIs are predictors of CSE. We investigated the relationship between STI presentation at sexual health clinics (SHCs) and CSE. METHODS: SHCs with 18 or more children aged 13-15 years old with STI diagnoses in 2012 were identified using the Genitourinary Medicine Clinic Activity Data Set STI Surveillance System. Cases with confirmed bacterial or protozoal STIs were matched by age, gender and clinic with non-STI controls. Lead clinicians were asked to complete an online questionnaire on CSE-related risk factors of cases and controls irrespective of STI presence. Associations between STI outcome and CSE-related risk factors were analysed using conditional logistic regression. RESULTS: Data were provided on 466 children aged 13-15 years old; 414 (89%) were female, 340 (80%) were aged 15, 108 (23%) were aged 14, and 18 (3.9%) were aged 13 years. In matched univariate analysis, an STI diagnosis was significantly associated with 'highly-likely/confirmed' CSE (OR 3.87, p=0.017) and safeguarding concerns (OR 1.94, p=0.022). Evidence of an association between STI diagnosis and 'highly-likely/confirmed' CSE persisted after adjustment for partner numbers and prior clinic attendance (OR 3.85, p=0.053). CONCLUSION: Presentation with bacterial or protozoal STIs in children aged 13-15 years old at SHCs may be considered a potential marker for CSE. It would be prudent to consider CSE, indepth assessment and potential referral for any children under 16 years old presenting with a bacterial or protozoal STI

    Investigating the clinical use of structured light plethysmography to assess lung function in children with neuromuscular disorders

    Get PDF
    BackgroundChildren and young people with neuromuscular disorders (NMD), such as Duchenne Muscular Dystrophy (DMD), develop progressive respiratory muscles weakness and pulmonary restriction. Pulmonary function monitoring of the decline in lung function allows for timely intervention with cough assist techniques and nocturnal non-invasive ventilation (NIV). NMD may find the measurement of lung function difficult using current techniques. Structured Light Plethysmography (SLP) has been proposed as a novel, non-contact, self-calibrating, non-invasive method of assessing lung function. The overarching aim of this study was to investigate the use of SLP as a novel method for monitoring respiratory function in children with neuromuscular disease.MethodsSLP thoraco-abdominal (TA) displacement was correlated with forced vital capacity measurements recorded by spirometry and the repeatability of the measurements with both methods examined. SLP tidal breathing parameters were investigated to assess the range and repeatability of regional right and left side TA displacement and rib cage and abdominal wall displacement.ResultsThe comparison of the FVC measured with SLP and with spirometry, while having good correlation (R = 0.78) had poor measurement agreement (95% limits of agreement: -1.2 to 1.2L) The mean relative contribution of right and left TA displacement in healthy controls was 50:50 with a narrow range. Repeatability of this measure with SLP was found to be good in healthy controls and moderate in NMD children with/without scoliosis but with a wider range. The majority of the control group displayed a predominant rib cage displacement during tidal breathing and those who displayed predominant abdominal wall displacement showed displacement of both regions close to 50:50 with similar results for the rib cage and abdomen. In comparison, children with NMD have a more variable contribution for all of these parameters. In addition, SLP was able to detect a reduction in abdominal contribution to TA displacement with age in the DMD group and detect paradoxical breathing in children with NMD. Using SLP tracings during tidal breathing we were able to identify three specific patterns of breathing amongst healthy individuals and in children with NMD.ConclusionsSLP is a novel method for measuring lung function that requires limited patient cooperation and may be especially useful in children with neuromuscular disorders. Measuring the relative contributions of the right and left chest wall and chest versus abdominal movements allows a more detailed assessment

    Temporal Gene Expression Profiling during Rat Femoral Marrow Ablation-Induced Intramembranous Bone Regeneration

    Get PDF
    Enhanced understanding of differential gene expression and biological pathways associated with distinct phases of intramembranous bone regeneration following femoral marrow ablation surgery will improve future advancements regarding osseointegration of joint replacement implants, biomaterials design, and bone tissue engineering. A rat femoral marrow ablation model was performed and genome-wide microarray data were obtained from samples at 1, 3, 5, 7, 10, 14, 28, and 56 days post-ablation, with intact bones serving as controls at Day 0. Bayesian model-based clustering produced eight distinct groups amongst 9,062 significant gene probe sets based on similar temporal expression profiles, which were further categorized into three major temporal classes of increased, variable, and decreased expression. Osteoblastic- and osteoclastic-associated genes were found to be significantly expressed within the increased expression groups. Chondrogenesis was not detected histologically. Adipogenic marker genes were found within variable/decreased expression groups, emphasizing that adipogenesis was inhibited during osteogenesis. Differential biological processes and pathways associated with each major temporal group were identified, and significantly expressed genes involved were visually represented by heat maps. It was determined that the increased expression group exclusively contains genes involved in pathways for matrix metalloproteinases (MMPs), Wnt signaling, TGF-β signaling, and inflammatory pathways. Only the variable expression group contains genes associated with glycolysis and gluconeogenesis, the notch signaling pathway, natural killer cell mediated cytotoxicity, and the B cell receptor signaling pathway. The decreased group exclusively consists of genes involved in heme biosynthesis, the p53 signaling pathway, and the hematopoietic cell lineage. Significant biological pathways and transcription factors expressed at each time point post-ablation were also identified. These data present the first temporal gene expression profiling analysis of the rat genome during intramembranous bone regeneration induced by femoral marrow ablation

    High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation

    Get PDF
    Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a highresolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence

    Finding Apparent Horizons in Dynamic 3D Numerical Spacetimes

    Get PDF
    We have developed a general method for finding apparent horizons in 3D numerical relativity. Instead of solving for the partial differential equation describing the location of the apparent horizons, we expand the closed 2D surfaces in terms of symmetric trace--free tensors and solve for the expansion coefficients using a minimization procedure. Our method is applied to a number of different spacetimes, including numerically constructed spacetimes containing highly distorted axisymmetric black holes in spherical coordinates, and 3D rotating, and colliding black holes in Cartesian coordinates.Comment: 19 pages, 13 figures, LaTex, to appear in Phys. Rev. D. Minor changes mad

    Printing the Pathway Forward in Bone Metastatic Cancer Research: Applications of 3D Engineered Models and Bioprinted Scaffolds to Recapitulate the Bone-Tumor Niche.

    Get PDF
    Breast cancer commonly metastasizes to bone, resulting in osteolytic lesions and poor patient quality of life. The bone extracellular matrix (ECM) plays a critical role in cancer cell metastasis by means of the physical and biochemical cues it provides to support cellular crosstalk. Current two-dimensional in-vitro models lack the spatial and biochemical complexities of the native ECM and do not fully recapitulate crosstalk that occurs between the tumor and endogenous stromal cells. Engineered models such as bone-on-a-chip, extramedullary bone, and bioreactors are presently used to model cellular crosstalk and bone-tumor cell interactions, but fall short of providing a bone-biomimetic microenvironment. Three-dimensional bioprinting allows for the deposition of biocompatible materials and living cells in complex architectures, as well as provides a means to better replicate biological tissue niches in-vitro. In cancer research specifically, 3D constructs have been instrumental in seminal work modeling cancer cell dissemination to bone and bone-tumor cell crosstalk in the skeleton. Furthermore, the use of biocompatible materials, such as hydroxyapatite, allows for printing of bone-like microenvironments with the ability to be implanted and studied in in-vivo animal models. Moreover, the use of bioprinted models could drive the development of novel cancer therapies and drug delivery vehicles

    A map for successful CCNE accreditation

    Get PDF
    The purpose of this article is to provide nurse educators with recommendations on how to develop the needed structures and processes that lead to accreditation success. We provide a comprehensive list of 28 recommendations, a timeline for completion of tasks, and specific information on how to document the achievement of the four CCNE Standards. The first two recommendations deal with two vital structures that comprise a well-functioning program: an effective committee structure and a robust evaluation plan. Recommendations 3 to 12 concern the process steps for preparing for an accreditation visit and are aligned with a timeline for completion. The remaining recommendations address how to document compliance with each CCNE standard
    corecore