60 research outputs found

    Can mid-infrared biomedical spectroscopy of cells, fluids and tissue aid improvements in cancer survival? : a patient paradigm

    Get PDF
    This review will take a fresh approach from the patient perspective; offering insight into the applications of mid-infrared biomedical spectroscopy in a scenario whereby the patient presents with non-specific symptoms and via an extensive diagnostic process multiple lesions are discovered but no clear sign of the primary tumour; a condition known as cancer of unknown primary (CUP). With very limited options to diagnose the cancer origin, treatment options are likely to be ineffective and prognosis is consequentially very poor. CUP has not yet been targeted by infrared biospectroscopy, however, this timely, concise dissemination will focus on a series of research highlights and breakthroughs from the field for the management of a variety of cancer-related diseases - many examples of which have occurred within this year alone. The case for integration of mid-infrared (MIR) technology into clinical practice will be demonstrated largely via diagnostic, but also therapeutic and prognostic avenues by means of including cytological, bio-fluid and tissue analysis. The review is structured around CUP but is relevant for all cancer diagnoses. Infrared spectroscopy is fast developing a reputation as a valid and powerful tool for the detection and diagnosis of cancer using a variety of sample formats. The technology will produce data and tools that are designed to complement routine clinical practice; enhancing the ability of the clinician to make a reliable and non-subjective decision and enabling decreased levels of mortality and morbidity and gains in patient quality of life

    Preclinical screening of anticancer drugs using infrared (IR) microspectroscopy

    Get PDF
    High-throughput label-free technologies such as IR microscopy can objectively assess the effect of drugs upon cellular systems, offering the potential of a valuable preclinical tool that can aid in the drug development process

    Development of Fourier transform infrared spectroscopy for drug response analysis

    Get PDF
    The feasibility of FTIR-based spectroscopy as a tool to measure cellular response to therapeutics was investigated. Fourier transform mid-infrared spectroscopy has been used in conjunction with multivariate analysis (MVA) to assess the chemistry of many clinically relevant biological materials; however, the technique has not yet found its place in a clinical setting. One issue that has held the technique back is due to the spectral distortions caused by resonant Mie scattering (RMieS), which affects the ability to confidently assign molecular assignments to the spectral signals from biomaterials. In the light of recently improved understanding of RMieS, resulting in a novel correction algorithm, the analytical robustness of corrected FTIR spectra was validated against multi-discipline methods to characterise a set of renal cell lines which were selected for their difference in morphology.After validation of the FTIR methodology by discriminating different cell lines, the second stage of analyses tested the sensitivity of FTIR technique by determining if discrete chemical differences could be highlighted within a cell population of the same origin. The renal carcinoma cell line 2245R contains a sub-population to contain a sub-population of cells displaying 'stem-cell like' properties. These stem-like cells, however, are difficult to isolate and characterise by conventional '-omic' means. Finally, cellular response to chemotherapeutics was investigated using the established renal cell lines CAKI-2 and A-498. For the model, 5-fluorouracil (5FU), an established chemotherapeutic agent with known mechanisms of action was used. Novel gold-based therapeutic compounds were also assessed in parallel to determine their efficacy against renal cell carcinoma. The novel compounds displayed initial activity, as the FTIR evidence suggested compounds were able to enter the cells in the first instance, evoking a cellular response. The long-term performance, tracked with standard proliferation assays and FTIR spectroscopy in the renal cancer cell model, however, was poor. Rather than dismissing the compounds as in-active, the compounds may simply be more effective in cancer cell types of a different nature. The FTIR-based evidence provided the means to suggest such a conclusion. Overall, the initial results suggest that the combination of FTIR and MVA, in the presence of the novel RMieS-EMSC algorithm can detect differences in cellular response to chemotherapeutics. The results were also in-line with complimentary biological-based techniques, demonstrating the powerful potential of the technique as a promising drug screening tool.EThOS - Electronic Theses Online ServiceEPSRCRSCGBUnited Kingdo

    Developing and understanding biofluid vibrational spectroscopy : a critical review

    Get PDF
    Vibrational spectroscopy can provide rapid, label-free, and objective analysis for the clinical domain. Spectroscopic analysis of biofluids such as blood components (e.g. serum and plasma) and others in the proximity of the diseased tissue or cell (e.g. bile, urine, and sputum) offers non-invasive diagnostic/monitoring possibilities for future healthcare that are capable of rapid diagnosis of diseases via specific spectral markers or signatures. Biofluids offer an ideal diagnostic medium due to their ease and low cost of collection and daily use in clinical biology. Due to the low risk and in vasiveness of their collection they are widely welcomed by patients as a diagnostic medium. This review under scores recent research within the field of biofluid spectroscopy and its use in myriad pat hologies such as cancer and infectious diseases. It highlights current progresses, advents, and pitfalls within the field and discusses future spectroscopic clinical potentials for diagnostics. The requirements and issues surrounding clinical translation are also considered

    Spontaneous restoration of functional β-cell mass in obese SM/J mice

    Get PDF
    Maintenance of functional β-cell mass is critical to preventing diabetes, but the physiological mechanisms that cause β-cell populations to thrive or fail in the context of obesity are unknown. High fat-fed SM/J mice spontaneously transition from hyperglycemic-obese to normoglycemic-obese with age, providing a unique opportunity to study β-cell adaptation. Here, we characterize insulin homeostasis, islet morphology, and β-cell function during SM/J\u27s diabetic remission. As they resolve hyperglycemia, obese SM/J mice dramatically increase circulating and pancreatic insulin levels while improving insulin sensitivity. Immunostaining of pancreatic sections reveals that obese SM/J mice selectively increase β-cell mass but not α-cell mass. Obese SM/J mice do not show elevated β-cell mitotic index, but rather elevated α-cell mitotic index. Functional assessment of isolated islets reveals that obese SM/J mice increase glucose-stimulated insulin secretion, decrease basal insulin secretion, and increase islet insulin content. These results establish that β-cell mass expansion and improved β-cell function underlie the resolution of hyperglycemia, indicating that obese SM/J mice are a valuable tool for exploring how functional β-cell mass can be recovered in the context of obesity

    Introducing discrete frequency infrared technology for high-throughput biofluid screening

    Get PDF
    Accurate early diagnosis is critical to patient survival, management and quality of life. Biofluids are key to early diagnosis due to their ease of collection and intimate involvement in human function. Large-scale mid-IR imaging of dried fluid deposits offers a high-throughput molecular analysis paradigm for the biomedical laboratory. The exciting advent of tuneable quantum cascade lasers allows for the collection of discrete frequency infrared data enabling clinically relevant timescales. By scanning targeted frequencies spectral quality, reproducibility and diagnostic potential can be maintained while significantly reducing acquisition time and processing requirements, sampling 16 serum spots with 0.6, 5.1 and 15% relative standard deviation (RSD) for 199, 14 and 9 discrete frequencies respectively. We use this reproducible methodology to show proof of concept rapid diagnostics; 40 unique dried liquid biopsies from brain, breast, lung and skin cancer patients were classified in 2.4 cumulative seconds against 10 non-cancer controls with accuracies of up to 90%

    Drug Susceptibility Patterns of Mycobacterium Tuberculosis from Adults With Multidrug-Resistant Tuberculosis and Implications for a Household Contact Preventive Therapy Trial

    Get PDF
    BACKGROUND: Drug susceptibility testing (DST) patterns of Mycobacterium tuberculosis (MTB) from patients with rifampicin-resistant tuberculosis (RR-TB) or multidrug-resistant TB (MDR-TB; or resistant to rifampicin and isoniazid (INH)), are important to guide preventive therapy for their household contacts (HHCs). METHODS: As part of a feasibility study done in preparation for an MDR-TB preventive therapy trial in HHCs, smear, Xpert MTB/RIF, Hain MTBDRplus, culture and DST results of index MDR-TB patients were obtained from routine TB programs. A sputum sample was collected at study entry and evaluated by the same tests. Not all tests were performed on all specimens due to variations in test availability. RESULTS: Three hundred eight adults with reported RR/MDR-TB were enrolled from 16 participating sites in 8 countries. Their median age was 36 years, and 36% were HIV-infected. Routine testing on all 308 were confirmed as having RR-TB, but only 75% were documented as having MDR-TB. The majority of those not classified as having MDR-TB were because only rifampicin resistance was tested. At study entry (median 59 days after MDR-TB treatment initiation), 280 participants (91%) were able to produce sputum for the study, of whom 147 (53%) still had detectable MTB. All but 2 of these 147 had rifampicin DST done, with resistance detected in 89%. Almost half (47%) of the 147 specimens had INH DST done, with 83% resistance. Therefore, 20% of the 280 study specimens had MDR-TB confirmed. Overall, DST for second-line drugs were available in only 35% of the 308 routine specimens and 15% of 280 study specimens. CONCLUSIONS: RR-TB was detected in all routine specimens but only 75% had documented MDR-TB, illustrating the need for expanded DST beyond Xpert MTB/RIF to target preventive therapy for HHC
    • …
    corecore