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For the degree of Doctor of Philosophy and entitled ‘Development of 

Fourier Transform Infrared Spectroscopy for Drug Response Analysis’ 

Date of submission: 27/09/2011 

 
The feasibility of FTIR-based spectroscopy as a tool to measure cellular response to 
therapeutics was investigated. Fourier transform mid-infrared spectroscopy has 
been used in conjunction with multivariate analysis (MVA) to assess the chemistry 
of many clinically relevant biological materials; however, the technique has not yet 
found its place in a clinical setting.  One issue that has held the technique back is 
due to the spectral distortions caused by resonant Mie scattering (RMieS), which 
affects the ability to confidently assign molecular assignments to the spectral 
signals from biomaterials.  In the light of recently improved understanding of 
RMieS, resulting in a novel correction algorithm, the analytical robustness of 
corrected FTIR spectra was validated against multi-discipline methods to 
characterise a set of renal cell lines which were selected for their difference in 
morphology. 
After validation of the FTIR methodology by discriminating different cell lines, the 
second stage of analyses tested the sensitivity of FTIR technique by determining if 
discrete chemical differences could be highlighted within a cell population of the 
same origin. The renal carcinoma cell line 2245R contains a sub-population to 
contain a sub-population of cells displaying ‘stem-cell like’ properties. These stem-
like cells, however, are difficult to isolate and characterise by conventional ‘-omic’ 
means.  
Finally, cellular response to chemotherapeutics was investigated using the 
established renal cell lines CAKI-2 and A-498. For the model, 5-fluorouracil (5FU), 
an established chemotherapeutic agent with known mechanisms of action was used.  
Novel gold-based therapeutic compounds were also assessed in parallel to 
determine their efficacy against renal cell carcinoma. The novel compounds 
displayed initial activity, as the FTIR evidence suggested compounds were able to 
enter the cells in the first instance, evoking a cellular response. The long-term 
performance, tracked with standard proliferation assays and FTIR spectroscopy in 
the renal cancer cell model, however, was poor. Rather than dismissing the 
compounds as in-active, the compounds may simply be more effective in cancer 
cell types of a different nature. The FTIR-based evidence provided the means to 
suggest such a conclusion.  
Overall, the initial results suggest that the combination of FTIR and MVA, in the 
presence of the novel RMieS-EMSC algorithm can detect differences in cellular 
response to chemotherapeutics. The results were also in-line with complimentary 
biological-based techniques, demonstrating the powerful potential of the technique 
as a promising drug screening tool.  



 

 

 

12

Declaration 

 

No portion of the work referred to in this thesis has been submitted in support of an 

application for another degree or qualification of this or any other university or 

other institute of learning. 

 

C. S. Hughes 27/09/2011 



 

 

 

13

Copyright Statement 

 

i. The author of this thesis (including any appendices and/or schedules to this thesis) 

owns certain copyright or related rights in it (the “Copyright”) and s/he has given 

The University of Manchester certain rights to use such Copyright, including for 

administrative purposes. 

 

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic 

copy, may be made only in accordance with the Copyright, Designs and Patents Act 

1988 (as amended) and regulations issued under it or, where appropriate, in 

accordance with licensing agreements which the University has from time to time. 

This page must form part of any such copies made. 

 

iii. The ownership of certain Copyright, patents, designs, trade marks and other 

intellectual property (the “Intellectual Property”) and any reproductions of 

copyright works in the thesis, for example graphs and tables (“Reproductions”), 

which may be described in this thesis, may not be owned by the author and may be 

owned by third parties. Such Intellectual Property and Reproductions cannot and 

must not be made available for use without the prior written permission of the 

owner(s) of the relevant Intellectual Property and/or Reproductions. 

 

iv. Further information on the conditions under which disclosure, publication and 

commercialisation of this thesis, the Copyright and any Intellectual Property and/or 

Reproductions described in it may take place is available in the University IP 

Policy, in any relevant Thesis restriction declarations deposited in the University 

Library, The University Library’s regulations and in The University’s policy on 

Presentation of Theses. 



 

 

 

14

Acknowledgements 

 

During my PhD I have received the help and support of many people. First and 

foremost I would like to thank all the people whom I have worked with at the 

Multidisciplinary Biocentre and the Paterson Institute for Cancer Research, at the 

University of Manchester. I would also like to thank all of those whom have helped 

me whilst working at the Synchrotrons in Daresbury, Paris, Trieste and Wisconsin.   

 

In particular I give thanks to my official and un-official supervisors; Dr Peter 

Gardner, Professor Richard Snook, Dr Mick Brown and Professor Noel Clarke for 

their endless support, guidance and expertise.  

 

I give thanks to all those who have patiently aided me in training over the course of 

my PhD such as ‘navigating Matlab’ and ‘cell culturing for non-biologists!’; for 

this, I thank my fellow colleagues Claire, Matthew, Paul, Thomas, Sarah, Duncan, 

Alex, Elsa, Sue, Tim and Ehsan. I would also like to thank my other colleagues 

Frank, Geri, Konrad, Ash, Melody, Adriana and Graeme for their support, advice 

and collaboration and for having a brilliant ‘team-ethic’.  

 

I thank Engineering and Physical Sciences council and the Royal Society of 

Chemistry for their generous funding of my PhD. 

 

Finally I thank my family for persuading me to take up the rather daunting 

challenge of studying for a PhD in the first place, as well as providing endless 

support, encouragement and understanding. 

 

This thesis is dedicated to the loving memory of David Roberts, whom is 

responsible for igniting my passion for science. Thank you, Granddad.  

 



 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

Chapter 1│Introduction 



 

 

 

16

1.1│The Major Classes of Biological Macromolecules 

Molecules, such as water, inorganic ions and a large array of small organic  

molecules such as sugars and fatty acids can be taken up by cells. By a series of 

chemical reactions cells have the ability to alter and manufacture many small 

organic molecules. These small organic molecules are pre-cursors to 

macromolecule synthesis and cells must manufacture large organic molecules via 

their polymerisation. There are four main classes: proteins, nucleic acids, 

carbohydrates and lipids [1].   

 

1.1.1│Proteins 

Proteins are the most abundant and functionally versatile of the four biological 

macromolecules in the cell.  Proteins are comprised of amino acid sub-units, which 

are linked together by strong covalent peptide bonds. These linkages many be 

arranged in a linear polypeptide chain (Eq. 1) [1].   

 

 

(1) 

 

 

The peptide bonds link amino acid residues within proteins. This sequence of 

covalently linked amino acids is known as the primary (1˚) structure of a protein 

(Fig. 1.1). 

 

Protein secondary (2˚) structure primarily concerns the polypeptide backbone rather 

than the side chains. Polar side chains are generally arranged on the outside and 

hydrophobic ones on the inside in a water-soluble protein. The backbone has 

hydrogen groups (C=O, N-H) capable of hydrogen bonding which, unless satisfied 

with actual bond formation, would lead to a destabilised protein structure. As the 

polypeptide backbone crosses back and forth, folding the molecule into a compact 

shape the backbone is exposed to the hydrophobic protein interior. The non-polar 

side groups of the amino acids in the protein interior are not capable of hydrogen 
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bonding, therefore hydrogen bonding occurs with groups on the same, or and 

adjacent polypeptide backbone. The two main classes of structure which satisfy this 

arrangement are the  helix (Fig.1.1 2˚(i)), where the backbone is arranged in a 

spiral-like coil, and the  sheet (Fig.1.1 2˚(ii)), where polypeptide backbones are 

extended, side by side. The helix and sheet structures are connected with connecting 

loops known as random coils (Fig.1.1 2˚(iii)) that do not fall into the previous 

defined categories. Their structure is associated with side chain interactions and 

may not necessarily satisfy the hydrogen bonding potentials of the polypeptide 

backbone, therefore such sections are mostly found at the protein exterior in contact 

with water [1].  

 

Protein tertiary structure describes the arrangement of various secondary structure 

polypeptides that are folded up into the compact structure of a globular protein 

(Fig.1.1 3˚), defining the protein molecule. Hydrogen bonding and ionic interactions 

between side chains influence the folded structure while hydrophobic force is an 

essential contributor that drives the protein folding.  Individual protein molecules in 

a structure are called subunits.  Quaternary structure ((Fig.1.1 4˚) describes the 

arrangement of subunits into a singular functional complex [1].   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 │Diagrammatic illustration of the meaning of the four descriptions of protein 
structure; primary (1˚), secondary (2˚), tertiary (3˚) and quaternary (4˚). For secondary 
structure i-iii denotes alpha helix, beta sheet and random coil respectively [1].   
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Each type of protein usually has a unique function associated with its particular 

composition and feature. Roles include biological catalysis, contributing to 

organism structure, participating in cell signalling, recognition and immunity.  

 

1.1.2 │ Nucleic acids 

Nucleic acids consist of two closely related forms; deoxyribonucleic acid (DNA) 

and ribonucleic acid (RNA). Their function involves the storage and conversion of 

genetic information into proteins. They are comprised of a sugar-phosphate 

backbone and a series of base pairs which are the informational coding part of the 

nucleic acid structure. The term nucleic acid was derived from the fact that DNA 

was first isolated from cell nuclei, and is acidic due to the phosphate groups [1]. 

DNA is double stranded, comprised of two polynucleotide molecules paired 

together by hydrogen-bonded complimentary base pairing (Fig. 1.2) [2]. The base 

pairs in DNA are adenine to thymine and guanine to cytosine (In RNA, thymine is 

substituted for uracil).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2│ The Watson and Crick hydrogen-bonded base pairs of DNA, where S-P denotes the 
sugar-phosphate backbone. Two hydrogen bonds are formed between adenine and thymine, 
which is situated on the opposite strand. Three hydrogen bonds are formed between guanine and 
cytosine, which is also on the opposite strand.  
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The sugar-phosphate backbone is comprised of a series of 2’-deoxyribose molecules 

(or ribose in RNA) linked together by phosphodiesters (Fig. 1.3). When attached to 

ribose or deoxyribose, the bases are termed nuleosides and are associated as 

guanosine, thymidine, adenosine and cytidine [1]. 

 

 

 

 

 

 

 

 

 

 

 

1.1.3 │ Lipids 

Lipids are the main components of membranes in all cells and can also serve as 

energy storage molecules. Lipids are neutral fats derived from fatty acids, which 

have the structure RCOOH, where R is a long hydrocarbon chain [1].  

 

 

 

 

 

 

 

 

 
Figure 1.4 │membrane lipid arrangement in the lipid bilayer 

Figure 1.3│The sugar-phosphate backbone of DNA: A polymer with an alternating sequence of 
sugar-phosphate. The deoxyribose sugar is joined at both the 3'-hydroxyl and 5'-hydroxyl 
groups to phosphate groups in ester links, known as phosphodiester bonds.  
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Membrane lipids are amphipathic compounds comprising of a polar, hydrophilic 

head group and a non-polar, hydrophobic tail. These lipids arrange themselves in a 

lipid bilayer and are the basic structure of all biological membranes. The lipid 

bilayer is more complex than described in Figure 1.4 as integral proteins, peripheral 

proteins and some carbohydrate attachments also form part of the membrane 

structure. Cell membranes play major roles, aside from retaining the cell contents. 

They transport substances in and out of the cell, they transmit signal from the 

outside of the cell to the inside, maintain cell shape and are key for cell to cell 

interactions [1].  

 

1.1.4 │ Carbohydrates 

Carbohydrate molecules are the main source of energy for most living organisms. 

When polymerised, they can function as structural supports, protective coatings and 

long term energy storage molecules. Glucose, the central ingredient for metabolism 

activity, is stored in the cell in the form of glycogen and converted during 

glycogenolysis to glucose molecules when required (Eq. 2). Glycogen is catabolised 

via interaction with inorganic phosphate from the enzyme glycogen phosphorylase 

resulting in the cleavage of a glucose monomer to produce glucose-1-phosphate 

(G1P) [1]. G1P is then converted to glucose-6-phosphate (G6P) by the enzyme 

phosphoglucomutase. G6P can be further hydrolysed by the enzyme glucose-6-

phoshatase to give free glucose to enable the start of the glycolysis [1].   

 

 

 

(2) 

 

 

 

 

Glycoproteins are proteins having covalently bound carbohydrate. The carbohydrate 

units are involved in various biological activities, such as influencing protein 
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folding and conformation. The carbohydrate unit in a transmembrane glycoprotein 

aids the molecule orientation and anchorage of the molecule in the lipid bilayer [3].  

 

1.2 │The Molecular Biology of Cancer:  

1.2.1 │ Cell cycle 

Active, replicating cells pass through a series of stages that are collectively known 

as the cell cycle (Fig 1.5). There are two gap phases, G/G1 and G2, a synthesis 

phase, S, and a dividing phase, M.  

 

Interphase describes the processes involved in preparation for mitosis including cell 

growth and reparation in the G, S and G2 phases. During the processes there are 

certain check-points that determine whether or not cell progression should proceed.  

 

 

 

 

 

 

 

 

 

 

 

 

The first stage of the cell cycle gap  ‘G’ or ‘G1’, is the period of time when the cell 

prepares for DNA synthesis in the ‘S’ phase. It is during G1 that the decision is 

made whether or not the cell should proceed to divide. If the decision is positive 

then the cycle progresses to S phase where DNA synthesis occurs and the genome is 

duplicated. After the ‘S’ phase the cell enters another gap, ‘G2’ where the decision 

Figure 1.5 │Simplified diagram of cell cycle check points depicting G, S , G2 and M phases. Cell 
cycle arrest points are (i) if no growth factor signal received and (ii) if DNA damage or 
incomplete duplication . 
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is again made whether the cell should progress to mitosis. If the cellular processes 

have not been executed correctly up to this point the cycle is halted. This second 

check-point is designed to ensure that if DNA is damaged, or incomplete replication 

has occurred, the process is halted. The consequences for not halting the process 

would result in progeny cells that may have acquired mutations or have a lethally 

incomplete compliments of genes. Halting the process ensures time for replication 

to finish, or DNA repair to occur, or for the cell to undergo programmed cell death 

[1].   

 

An individual cell itself does not make these decisions can be signalled from 

extracellular signalling molecules, cytokines and growth factors that are secreted by 

other cells so that cell division in the tissue is co-ordinated. In brief, growth factors 

transmit signals to the nucleus via signal transduction pathways resulting in the 

control of specific genes and their activity. A mitogenic growth factor stimulates the 

synthesis of proteins necessary for proceeding to S phase [1].  

 

Cell cycle progression is halted if the mitogenic signal is not received. The cells 

enter a quiescent G0 phase in which its metabolism continues as normal, however, 

cell division does not occur. In general, cells remain in G0 phase for considerable 

time before switching to G1 phase to enter the cell cycle.  

 

M phase in the cell cycle accounts for cell division, which is called mitosis in 

eukaryote cells. Without division, the cell membrane and cell volume will steadily 

enlarge. As the surface of a spherical organism increases by the square of its radius 

(r), its volume increases at a rate of (r3). An increase in cell size (r) produces a 

relatively smaller increase in surface area (r2) than in volume (r3). The inner 

components have less surface area from which to obtain food, metabolites and 

oxygen. There is also less surface area to remove waste products and therefore cell 

death would quickly occur in the absence of cell division [1].  
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1.2.2 │ Protein kinases 

Protein kinases are essential to maintaining control of the cell cycle. Controlling the 

activation of proteins involves the chemical process of phosphorylation and the 

reverse, de-phosphorylation. In G1 phase, cycline proteins are synthesised if growth 

factors or cytokines activate their synthesis. Cyclines enable the activation of 

protein kinases.  

 

In every cell cycle the cyclin proteins are synthesised in G1 and destroyed in S 

phase. When the cell enters S phase the cyclins relevant to the G1 phase kinase 

activity are destroyed. New cyclins are also synthesised to enable progression from 

S phase into mitosis. These mitotic-related cyclins accumulate during S and G2 

phase and combine with specific kinases. The kinase complex resides in the inactive 

form as the kinase is phosphorylated in three positions. Just before mitosis occurs, 

two phosphate groups are removed which causes activation of the complex [1].  

 

1.2.3 │ Growth regulation 

Cell proliferation is a result of cell growth and cell division, resulting in an increase 

in the number of cells in a population. In situations where a balance in cell 

proliferation needs to be met, cells will undergo programmed cell death such as 

apoptosis, where the cell is given a signal to die.  This is regulated by tumour 

suppressor genes which are a heterogeneous set of genes that inhibit the cancer-

related phenotype development in cells [4]. These genes are responsible for health 

levels of cell growth and differentiation.  

 

Tumour cells are said to have altered versions of these oncogenes, resulting in 

inactivation or loss the tumour suppressor genes. Inactivation of tumour suppressor 

genes plays a crucial role in cancer pathogenesis and is just as important as the 

activation of oncogenes in many cancers.  
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1.3│Chemotherapeutic Resistance  

1.3.1│Multi-drug resistance (MDR) pumps 

The study of multidrug resistance (MDR) in tumour cell lines has led to the 

discovery of the plasma membrane P-glycoprotein (P-gp) molecule [5]. One 

explanation for high resistance towards drug treatment can be found due to the high 

level of expression of the plasma glycoprotein ‘P-gp’. 

 

It is likely that there are many factors involved that determine the intrinsic MDR 

phenotype in renal cell carcinoma, however, P-gp expression is certainly an 

important factor [6]. 

 

The protein is a member of the ATP-binding cassette transporter (ABC) super-

family. These proteins are ATP-dependent cell membrane pumps that are 

responsible for the transport of substrates of a broad specificity. They operate as a 

drug efflux pump for xenobiotic compounds responsible for decreased drug 

accumulation in multidrug-resistant cells and often mediate the development of 

resistance to anticancer drugs [7].  

 

1.3.2│Cancer stem cell theory 

Adult stem cells, originally described in the haemopoietic system, have been 

described in many normal solid tissues including bladder, brain, breast, gut, kidney, 

liver and prostate [9-19]. They are rare by comparison with the number of 

amplifying and terminally differentiated cells of the organ of origin. Stem cells are 

required for tissue development and are stimulated to differentiate in response to 

tissue injury in addition to general replacement and repair. Unlike their 

differentiated progeny, stem cells are long-lived and present throughout the lifetime 

of the organ. This longevity makes them susceptible to the accumulation of genetic 

mutations.  

 

This has given rise to the cancer stem cell hypothesis [19-21], which proposes that 

within a given tumour there exists a small population of cells with stem-like ability 
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(Fig. 1.6). They have a capacity to exhibit properties including self renewal and the 

ability to undergo asymmetric division leading to the generation of progeny that can 

differentiate and propagate to produce a tumour with a heterogeneous phenotype.  

 

It is hypothesized that cells with stem-cell like properties may be influential in 

carcinogenesis, possessing the ability to self renew, produce differentiated daughter 

cells and resist environmental or therapeutic injury. Although there are mixed 

opinions across different cancer specialties, this has led to a surge in interest in 

identifying and characterizing the tumour initiating or cancer stem cell (CSC), with 

the aim of discovering novel diagnostic and prognostic markers [19-21]. The 

ultimate aim is to generate new therapeutic approaches and possible biomarkers. 

 

 

Tumours with ‘stem-like’ cells are more aggressive. They are said to have an over-

expression of MDR pumps and therefore have enhanced efflux capabilities of 

chemotherapy agents. The aim of cancer stem cell targeted therapy is to try and 

overcome MDR pump activity. This is challenging and difficult to achieve as adult 

stem cells or putative cancer stem cells are rare and lack of specific stem cell 

markers. This makes isolation and characterisation difficult [17]. 

Figure 1.6│Targeted therapeutic cancer stem cell treatment proposed to inhibit tumour 
relapse  
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1.4 │Renal Cell Carcinoma 

Renal cell carcinoma (RCC) accounts for 2 – 3% of cancers and the highest rate of 

occurrence is found in developed countries. RCC is accountable for the most 

frequently occurring solid lesion within the kidney and there are different types; 

each with individual histopathological and genetic characteristics. Three significant 

subtypes of RCC are conventional (clear cell), papillary and chromophobe with 

prevalence levels of 80-90%, at 10-15% and 4-5% respectively [22-23]. 

 

RCC is defined as carcinoma of the renal parenchyma, composed of tubular cells in 

varying arrangements that originate from the Proximal renal tubule epithelium. This 

is the lining of the tiny convoluted tubes that filter blood near the Bowman’s 

capsule. It is among the most resistant of tumours to therapy and unlike various 

other urological malignancies, the disease is currently fatal for over half of patients. 

The standard treatment involves surgery however 10 – 28 % will demonstrate a 

local reoccurrence or metastasis after a nephrectomy [22-23].   

 

Many renal tumours are asymptomatic until late in the progression of the disease. 

Many cases are found incidentally when using non-invasive imaging when 

evaluating a variety of symptoms and over half of RCCs are detected this way. 

Some of the most common conditions are hypertension, weight loss, anaemia and 

abnormal liver function [22-23].  

 

The general recommended system for clinical and scientific classification is the 

TNM stage system. Histological factors include the Fuhrman nuclear grade which is 

the most widely accepted histological grading system in RCC, remaining an 

independent prognostic factor, although subject to intra- and inter- observer 

discrepancies [22-23].      

 

Metastatic RCC (mRCC) in particular has very poor prognosis and limited 

treatment options. In chemotherapy, 5-fluroruracil (5FU) is said to be effective, but 
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only in the presence of immunotherapeutic agents such as Interferon-alpha (IFN-) 

[22-23]. 

 
Chemotherapy as a monotherapy should not be considered effective in patients with 

mRCC according to the European Association of Urology (EAU) guidelines. 

Equally surgical treatment alone is not a likely curative measure in mRCC unless all 

tumour deposits can be successfully removed. It has been found however that 

tumour nephrectomy used in combination with immunotherapeutic cytokine IFN-

alpha can improve the clinical prognosis [23].   

 

Therapy with similar agents such as interferon-alpha and interleukin 2 was the 

medical treatment standard for metastatic renal cell carcinoma (RCC) before 2006, 

although it carried a poor median survival rate of just one year [24]. 

  

Today medical treatment for metastatic RCC is a hot topic in the urological 

oncology field due to an increased understanding of the molecular mechanisms that 

dictate tumour angiogenesis. Signalling pathways with abnormal function are 

believed to contribute to the pathogenesis of many malignancies, particularly in 

terms of renal cancer [25].  

 

The pathogenesis of renal cancers is linked to loss of the von Hippel-Lindau tumour 

suppressor gene, leading to accumulation of hypoxia-inducible factor 1 (HIF-1) and 

the subsequent over-expression of HIF-1 target gene products, such as vascular 

endothelial growth factor. (Activation of mTOR can also lead to an increased 

expression of HIF-1). 

 

These HIF-1 induced factors are thought to be the key drivers of tumour 

angiogenesis; leading to the growth and progression of renal cancers [25] and 

studies have indicated HIF-1 mediates resistance to chemotherapy and radiation 

[26].   This has led to an increased focus on inhibiting key effectors such mTOR, 

VEGF and its receptor by multiple targeted therapy. Temsirolimus is a mammalian 

target of rapamycin (mTOR) protein kinase inhibitor, while inhibitors Sunitinib and 

Sorafenib target several protein kinases, including the VEGF receptor. According to 
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research, Temsirolimus should be considered as first-line treatment for low-risk 

patients while Sunitinib is recommended for first-line therapy for patients with good 

and intermediate-risk with Sorafenib as a second-line treatment [27]. In fact the 

EAU recommends that tyrosine kinase inhibitors should be considered as first or 

second line treatment for mRCC patients as a grade A recommendation [22-23]. 

 

 However many of the drugs used in targeted therapy are in their early stages of 

implementation and therefore the combination of surgery and systemic therapies 

represents the best management option for most patients with metastatic renal cell 

carcinoma. Many issues such as the use cyto-reductive nephrectomy, 

metastasectomy, and consolidative surgery will change as systemic therapies 

become more effective [28].  

 

1.5 │Aims of Study 

The main research focus is to develop Fourier transform infrared spectroscopy as a 

reliable analytical tool for analysing drug-based responses in chemo-biological 

material by investigating sample preparation, spectral methods of analysis and data 

interpretation.  

 

The intention is to lay the groundwork for future use whereby FTIR may play a role 

in drug-screening processes in the developmental stages of novel therapeutic 

compounds. In such a complex field, where FTIR spectroscopy is not yet a major 

player, it is important to maintain a multidisciplinary flavour to the research in order 

to validate and support findings and equally highlight the limitations.     

  

In the research field of bio-spectroscopy, analysis of cancerous material with FTIR-

spectroscopy and multivariate analysis is widely accepted based on the quantity of 

published research [29-36]. It has yet to be seen, however, if the technique will be 

implemented as a standard practice in a clinical setting.  

 

Issues of spectral distortion, such as the previously described as ‘anomalous 

dispersion’ artefact, has held back the progression of the field as spectral peak 
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assignments could not be assumed to be correct, as described in chapter 3. Recently, 

however, greater understanding of the nature of scattering in biological material has 

been determined and a new algorithm implemented to correct for the phenomena 

now known as resonant Mie scattering (RMieS) [37-39].  

 

To determine if confidence in FTIR spectral interpretation can now be increased, 

RMieS-EMSC-corrected biological spectra will be validated using multi-discipline 

methods to characterise a set of non-established renal cell lines. This part of the 

research lays the foundation for this project, and is presented in chapter 4. 

 

A second test to prove the capability of FTIR will be to extend characterisation to 

the next level of difficulty. Characterising the spectral profiles of cell lines that are 

established from different patients with different properties is a relatively 

straightforward process. Attempting to characterise a sub-population of cells from 

the same cell line, however, is somewhat more challenging. The question needs to 

be addressed if discrete chemical differences can be highlighted within a cell 

population of the same origin. In-keeping with the cancer stem cell theory, it is 

hypothesized that ‘cancer stem cells’ may be influential in carcinogenesis [40]. The 

‘side population’ is a sub-population of cells said to be enriched for stem-like cells, 

however they are difficult to isolate and characterise by conventional ‘-omic 

means’. Characterisation of these cell populations with synchrotron radiation FTIR 

micro-spectroscopy is attempted in chapter 5.  

 

Finally, the intention is to determine the feasibly of FTIR spectroscopy for cellular 

response detection to therapeutic agents in the context of renal cell carcinoma. The 

proposed model is to use 5-fluorouracil. In clinical practice, 5-fluorouracil does not 

excel in the therapeutic treatment of RCC [21-22], however unlike the more modern 

therapeutics, it is a well established agent with a wealth of information known about 

its mechanisms of action [41-42]. It is also an example of an agent that causes cell 

cycle arrest and is therefore interesting to study in FTIR spectroscopy.   

 

Another arm of the investigation involves novel gold-based therapeutic compounds 

whereby very little is known about the drug mode of action (Fig. 1.7). 
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It is thought that these novel compounds have increased stability next to older 

agents such as Cisplatin [43]. Renal carcinoma, being one of the most unresponsive 

cancers to chemotherapy alone, would provide an extremely challenging test for 

metal based agents to undergo.  

 

In an attempt to determine the feasibility of the technique, Chapter 6 includes initial 

testing and exploratory analysis of the different methods of FTIR spectroscopy that 

can be evoked. Chapter 7 seeks to separate some of the complicating spectroscopic 

factors so that spectral interpretation of purely drug-cell interactions may be 

accounted for.  

 

 

 

 

 

Figure 1.7 │The di-gold(I) organometallic complex KF0101 was found to exhibit cytotoxic 
activity in vitro (NCI Panel Testing) against a range of cancer cell types. KF0113 and KF0501 
are series analogues. 
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Chapter 2 │ Experimental Principals and 

Methodology 
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2.1 │ Fundamentals of FTIR Spectroscopy  

Fourier transform infrared (FTIR) spectroscopy monitors the vibrational bending 

and stretching modes of molecules that are resonant with the frequency of infrared. 

The wavelengths at which these groups absorb the infrared radiation are measured, 

resulting in a unique spectroscopic fingerprint with relative intensities dependant 

upon sample composition.  

 

2.1.1 │ Electromagnetic radiation and the photon 

Radiation can be described as an electromagnetic sine wave, comprising of both 

electric and magnetic field components. Electromagnetic interactions result from 

the exchange of photons as the electromagnetic field is quantised, in quantum 

mechanical terms. Electromagnetic radiation is classified according to the frequency 

of its wave in the electromagnetic spectrum [1].  

 

Spectroscopy is defined as the study the interaction of radiation with matter. 

Radiation is characterised by its energy, E. Radiation is emitted and absorbed in the 

tiny packets called photons. Photons can be described in two ways. Firstly, they can 

be said to hold particle properties, moving in straight lines at the speed of light. 

Photons have no detectable ‘rest’ mass, which enables them to travel at light speed 

with respect to all observers. Photons do, however, have both energy and 

momentum and the photon energy will be conserved unless emitted or absorbed by 

a charged particle. Einstein’s equation (E=MC2) cannot describe their energy 

however as they have no mass. Plank devised a constant to describe the relationship 

between photon energy and frequency [1]. 

 

The energy of the photon particle can be described mathematically (eq. 3) where h 

is Planck’s constant (6.626 × 10-34 J s) and  is the frequency (Hz).  

 

(3) 
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According to ‘wave-particle duality’ in quantum physics, it is natural for the photon 

to display either particle properties or wave properties, according to its 

circumstances. Waves have two important characteristics, frequency  and 

wavelength  related by the speed of light c in a vacuum (2.998 × 108 m/s) [1] (eq. 

4).  

 

(4) 

 

Therefore radiation, characterised by its energy E, is linked to the frequency  and 

wavelength of the radiation by the Planck relationship, extending equation (2). 

The energy of the electromagnetic wave is proportional to the frequency, or 

inversely proportional to the wavelength (eq. 5). 

 

  (5) 

 

 

Vibrational spectroscopy in particular uses the reciprocal wavelength (1 / ) which 

is the number of wavelengths per unit distance, denoted as wavenumber [1]. The 

wavenumber is usually written in the form (eq. 6): 

 

 

(6) 

 

2.1.2 │ Wave propagation and absorption  

One way to make the connection between particle and wave descriptions of a 

photon is to visualise a propagating wave packet.  

 

The speed of a wave depends upon the medium in which it propagates. The 

propagation of an electromagnetic wave in a non-absorbing medium can be 

described mathematically as (eq. 7): 

 

(7) 
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where A is the amplitude,  is the angular frequency, t is the time,  is the phase 

angle and   is the polarisation angle [1]. The angular frequency is a measure of 

how fast an object is rotating about its axis and is expressed by the wavelength and 

refractive index n [1] (eq. 8) 

 

(8) 

 

 

The refractive index must be modified to its complex form in the case for an 

absorbing medium (eq. 9).  

 (9) 

 

Here, the real part of the refractive index n is the ratio between c and the speed at 

which light travels in a material, known as the phase velocity p (eq. 10). 

 

(10) 

 

 

When infrared radiation passes through a material, or medium, some intensity is 

absorbed through interaction with the molecules, and some intensity passes through 

without interaction. For an absorbing medium, the absorption coefficient  is one of 

many ways to describe the absorption of electromagnetic waves.  can be expressed 

in terms of the imaginary part of the refractive index k and the wavelength of light 

(eq. 11). The imaginary part k indicates the amount of absorption loss when the 

wave propagates through the material [1].  

 

(11) 

 

 

Based on eq. 7, the transmittance of radiation at intensity I emerging through a 

material is related to the intensity of incident radiation I0 at the front face of the 
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material, at a particular wavenumber (eq.12).  The Beer Lambert Law results 

directly from this equation where  (cm) is the path length of the wave within the 

absorbing medium (optical thickness) and  is the molar absorption coefficient and 

c the concentration (mol dm-3) of the absorbing material (eq. 13) [1]. 

 

(12) 

 

(13) 

 

 

The proportion of absorbed intensity of radiation over the total intensity that enters 

the material has a direct relation to the concentration of the material. Absorbance 

becomes linear with concentration (eqn. 14) [2].  

 

 

(14) 

 

 

Absorbance is the negative logarithm of the transmittance (T) (eq. 15).  

 

(15) 

 

 

In the Beer-Lambert law, the concentration of an unknown material can be found by 

using the absorbance at a single wavelength. An absorbance spectrum, however, is a 

distribution of absorbance intensities for radiation passing through a sample over a 

series of wavelengths. Absorption varies with wavelength as the absorption 

coefficient has a different value at each wavelength [2]. 

 

When an interferogram is Fourier transformed it results in an output of light 

intensity at the detector versus the optical frequency. This raw, single beam 

spectrum contains information about the whole instrument; the sample, the sources, 

the ambient air, the optical components as well as any possible contamination in the 
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optical path. As only the information due to the sample itself is of interest, first a 

reference spectrum called the background must be acquired and used to remove 

unwanted information from the raw spectrum. The reference spectrum only contains 

information about the environment in the instrument and all reference spectra for 

FTIR spectrometers have the same general shape. The use of a reference spectrum 

is covered further in the next chapter (Ch. 2.2.2.).  

 

To obtain the absorbance spectrum of the sample, the value at each wavelength in 

the sample spectrum is divided against the corresponding value at the same 

wavelength in the reference spectrum and the negative logarithm is taken (eq. 16). 

[2].  

 

 

(16) 

 

 

2.1.3 │Molecular vibrations 

The absorption of light in a medium causes transitions from an energetic ground 

state to a particular excited state. Depending on the chemical nature of the 

interacting compound and the energy of radiation, the excited states may differ.  

 

Molecular vibrations range from the simple motions of two atoms in a diatomic 

molecule to the motions of every atom in a large polyatomic molecule. Molecules 

with N atoms have 3N degrees of freedom. 3N-6 degrees of freedom denote the 

number of ways that the atoms in a non-linear molecule can vibrate (the ‘-6’ 

explains translational and rotational modes about the x, y and z axes).  Each mode 

involves displacement of the atoms from their equilibrium positions and for each 

mode, i, all the atoms vibrate at a certain characteristic frequency, i [2]. 

 

Rotations and vibrations are excited in the infrared range and IR spectra result from 

transitions between quantized vibrational energy states. The energy difference for 
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transitions between the ground state (vi = 0) and the first excited state (vi=1) of most 

vibrational modes corresponds to the energy of radiation in the mid-infrared region. 

 

Molecules transition to the excited state only if their dipole moment , changes 

during the vibration. Some molecules will possess certain elements of symmetry 

such that some vibrational modes will be degenerate or forbidden. Homonuclear 

diatomic molecules, for example, are not infrared active.  

 

Due to this degeneracy, the number of vibrational modes usually observed is often 

less than 3N-6. For a linear molecule, for example, rotation about the axis of the 

bond does not involve any atom displacement, therefore one of the rotational 

degrees of freedom is lost. Thus the number of modes of a linear molecules is 3N-5 

so that a heteronuclear diatomic molecule (N=2) has a single vibrational mode. 

 

At certain frequencies, large atom displacements may only occur for a select 

number of atoms for many vibrational modes, while neighbouring atoms remain 

stationary. The frequencies of such modes are characteristic to the functional group 

in which the motion is centred thus the observation of spectral features in a certain 

spectral region often  indicates a specific chemical functional group of the molecule 

in question. [2].  

 

Complex organic molecules may involve significant atom displacements involving 

several atoms, such that the frequency may vary from one molecule to another for a 

particular functional group. These modes are known as fingerprint bands and are 

useful to distinguish similar molecules. Every molecule will have slightly different 

vibrational modes from all other molecules and so the vibrational spectrum of a 

given molecule is unique and can be used to identify that molecule. 
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2.2 │Infrared Instrumentation 

2.2.1 │Michelson interferometer 

Waves can interact with one another, if they come from a similar source or 

frequency, causing interference effects. Two waves sharing the same frequency 

with amplitude will interact favourably. Their peaks and troughs will line up and the 

resultant wave will have amplitude of the summation of the two, known as 

constructive interference. Two waves interacting out of phase result in destructive 

interference. One wave’s crests will coincide with another wave’s troughs and will 

cancel each other out, resulting in amplitude of zero. The interaction of waves is the 

key concept of an interferometer [2].    

 

An FTIR spectrometer consists of a globar light source, a two-beam interferometer 

(comprised of a fixed mirror, an adjustable mirror and a beam splitter) and a 

detector, such as mercury cadmium telluride (MCT). Modern interferometers are 

designed based on the original Michelson interferometer (Fig. 2.1). The Michelson 

interferometer divides the infrared beam into two paths by use of a beamsplitter 

which is reflected by two mirrors; one of fixed position and one that moves. The 

beams are subsequently recombined after path differences have been introduced, 

creating the opportunity for interference to occur between the beams. 
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Figure 2.1 │Schematic of a Michelson interferometer: The initial IR beam is split by the 
beamsplitter. The two split beams move different distances and have different phase delays 
when recombined, hence causing an interference pattern (an interferogram)  
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The split beams travel to different distances and hence have different phase delays 

when recombined. The resulting interferogram records the summation of cosine and 

sine contributions that display the signal intensity as a function of path length. The 

interferogram is Fourier-transformed which produces the sample spectrogram [2].   

 

2.2.2 │The importance of system purging 

FTIR systems are always in need of a constant supply of nitrogen or `air that has 

been filtered through a desiccator to remove moisture.  This is because an 

absorbance sample spectrum is susceptible to water and carbon dioxide 

contributions. If the carbon dioxide and water vapour levels are too high, 

absorptions of infrared energy by the gases will result in unwanted peaks that may 

obscure absorbing sample peaks.  

 

In the vapour phase small molecules display fine structure because both vibrational 

and rotational transitions can occur simultaneously. This is rarely observed in 

larger, vapour phase molecules, as the individual rotational transitions are too close 

together to be resolved. These transitions are also not observed in liquids as the rate 

of molecular collisions occurs faster than the rotational frequency [2]. The shape of 

the vibration-rotation spectra of water and carbon dioxide observed in a spectrum 

acquired with a poorly-purged system are characteristic (Fig 2.2).  

 

In a vibration-rotation spectrum of a diatomic molecule the rotational energy levels 

are characterised by a single rotational quantum number J.  Assuming a rigid rotor 

(constant bond lengths) EJ = BJ(J+1) where B is the rotational constant [2].  

 

The selection rule for a diatomic molecule in terms of a transition between 

rotational energy states is J = ±1 vibration-rotation spectrum of a rigid diatomic 

molecule, displaying the singular vibrational mode v0, results in a series of equally 

spaced lines above and below the vibrational mode at the R branch; J =+1 and P 

branch;J  
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In reality molecules are not rigid rotors and the length of bond between X-Y will 

increase due to increasing angular velocity from centrifugal forces. Due to this 

centrifugal distortion the spacing of the lines in the P branch increase, and the R 

branch decreases, as the distance from the vibrational mode increases. The spacing 

of the rotational modes in larger and less symmetric molecules decreases and the 

spectra become more complex [2]. 

 

For carbon dioxide, there is no change in the dipole moment of linear carbon 

dioxide during symmetric stretching and therefore the vibrational mode is 

forbidden. The anti-symmetric mode, however, does result in a change in dipole and 

is therefore allowed.  Linear molecules have two equal moments of inertia whilst 

non linear molecules usually have three different moments of inertia. Further 

complications arise, however, as linearity is lost in the bending and rotational 

modes, resulting in the Q branch of carbon dioxide near 670 cm-1 for example (Fig. 

2.2).   

 

 

 

 

 

 

 

 

 

 

Figure 2.2 │ A typical background spectrum with bands at ~2350 cm-1 and 667 cm-1 are due 
to carbon dioxide and bands at ~3500 cm-1 and 1630 cm-1 are due to water vapour [3]. 
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2.2.3│Basic principles of Fourier transforms  

The Fourier transform (FT) changes a signal (or any data) from the time domain to 

the frequency domain (and back again through the inverse FT) where f(t) is the 

signal in the time domain and F() is the signal in the frequency domain (eq. 17):  

 

(17) 

 

Any signal in the time domain is a sum of numbers at discrete points in time. 

Instead of a summation, it is common to let the terms approach zero and do an 

integral to reveal a convolution of the delta function that returns f(t) (eq. 18).  

 

  (18) 

 

 

As opposed to the summing up all these points, wave functions (eq. 19) are used to 

cover all points in time using Euler’s formula. 

  

(19) 

 

Wave packets have magnitude M with an exponential term eiwt. Acos(t) is the real 

part, proportional to cosine with amplitude A and imaginary part proportional to the 

sin with amplitude Bsin(t). Any time domain signal can be represented by a sum 

of all possible combinations of sinusoidal waves with n, frequencies and An, Bn 

amplitudes that stretch over all time at the right magnitude (eq. 20) [2].  

 

(20) 

  

In simplistic terms, eq.16 states the amount of signal with frequency () in f(t) is 

equal to (eq. 21):  
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(21) 

 

This is akin to asking the quantity of x in y, which would be (y/x) or that there is 

example, there is f(t)/20Hz amount of a 20Hz frequency in a signal.  However, the 

above equation states as f(t) is a single number and does not have frequency 

components. More correctly, the amount of signal F() is calculated by integrating 

over all values of t (eq. 22): 

 

(22) 

 

 

For each frequency, the amplitudes of the real and imaginary parts as a function of 

omega F(). The output from the DFT produces a complex number where the 

magnitude is the real part of the signal and the phase which is the initial angle of the 

wave [2].  

 

In Fourier transform spectroscopy, all wavelengths of light enter in parallel, 

simultaneously producing interference patterns for each one. The multiplex 

(Fellgett) principle states this as an advantage of reduced measurement time in 

comparison with a continuous wave spectrometer that observes only a single 

wavelength at a time [2]. The FT, a decomposition of a sequence of values into 

components of different frequencies, is often too slow to compute directly from the 

definition. Modern spectrometers use the fast Fourier transform (FFT), which is an 

algorithm to compute the same result more quickly [2].  

 

There is another advantage to using over FT spectrometers over continuous wave 

spectrometers. The Jacquinot advantage states that the signal-to-noise-ratio is higher 

as the light throughput is higher. There are no requirements for entrance and exit 

slits as wavelengths are being measured in parallel so the interferometer’s output 

light intensity is almost equal to the input intensity, which makes signal detection 

easier [2]. 
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2.3│ Methodology Principles  

2.3.1 │FTIR microspectroscopy  

A beam of IR light first enters the interferometer which modulates the wavelength 

of light. Infrared microscopes are similar to conventional microscopes, with the 

exception that the optics are mirrors instead of lenses, allowing the IR beam to pass 

through the system without being absorbed. The modulated infrared beam is then 

focused onto the sample by an objective, in conjunction with a visible beam of light 

for illumination, so that the sample can be viewed. Typically, a camera is attached 

to the microscope so that an optical image can be obtained. The jaws of the aperture 

can be adjusted so that only data for the sample region of interest can be acquired 

 

In general, IR microscopes allow for two modes of data collection. In transmission 

mode, the IR light passes through the sample and below the stage and is collected 

by a second IR objective that re-collimates the beam and sends it to the detector [4]. 

 

If the sample signal is collected in reflectance mode the light reflected back off the 

sample is collected using the same objective used to focus the beam onto the 

sample. Highly reflective substrates such as MirrIR can be used, comprising of an 

infrared-reflective surface coated by a conducting metal. When the thickness of the 

sample on a metallic substrate is similar to; or thicker than the wavelength of 

incident radiation, the reflection spectrum is similar to the transmission spectrum of 

the sample. The beam passes through the sample twice as the beam transmits 

through the cell and is reflected off the substrate. The mode of collection term is 

modified to transflection spectroscopy and results in absorbance bands that are 

approximately twice as great as the corresponding transmission spectrum [2].  

 

2.3.2 │Synchrotron radiation (SR) FTIR 

Spatial resolution in infrared microspectroscopy using a standard thermal source 

can be limited to a diameter of ~20 m due to high signal to noise ratio (SNR) 

requirements. This is due to low intrinsic brightness (photon flux or power emitted 

per source area and solid angle) of the thermal infrared source [5]. 
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Synchrotron radiation (SR) is emitted by a particle when it is accelerated (or 

decelerated) along the same direction of the particle in motion. Synchrotrons (Fig 

2.3) are electron storage rings that use magnetic fields to bend electrons into a 

closed orbit, producing radiation at each bending magnet. Infrared radiation is 

generated by these electrons, travelling at relativistic velocities either inside a 

curved path through a constant magnetic field (bending magnet radiation) or by 

longitudinal acceleration / deceleration when leaving/entering a magnetic section 

(edge radiation). The SR beam is then collimated and directed into the 

interferometer and then to the microscope. The two setups have equivalent flux; the 

option depends on the engineering preferences at a particular synchrotron [5].  

 

 

 

There are several advantages to using this IR source for micro-spectroscopy. Very 

few modifications are needed to adapt commercial instruments to operate with a SR 

source. Instruments fitted with a SR source can achieve high spatial resolution and 

excellent spectral quality with a good SNR. For single cell cancer tracking, the use 

of a synchrotron light source has been implemented to reach the highest spatial 

resolution, up to 5 x 5 m, enabling the spectroscopist to monitor subtle changes at 

the biomolecular level [7-9].  

 Figure 2.3 │Simplified schematic of a typical Synchrotron Station comprising of 6 main 
sections [6]. 
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2.3.3 │Imaging FTIR microspectroscopy 

FTIR imaging shares the fundamentals from the conventional technique but 

provides additional information in the form of spatially resolved spectra, combining 

digital imaging with the attributes of spectroscopic measurements. 

 

Conventionally, a single element detector is used in FTIR microspectroscopy. 

Single-point mapping traditionally uses confocal apertures to select the region of 

interest in a sample. Spectra are measured one point at a time, creating an average 

signal from the area contained within the range of the selected aperture [2]. The 

aperture can be reduced to increase spatial resolution, allowing finer sample detail 

to be observed. Modern, motorised microscope stages are also computer-controlled, 

enabling single point spectral maps to be acquired with high spatial precision. 

 

The ability to resolve detail, however, is limited by diffraction. Diffraction occurs 

when a wave encounters an obstacle and can affect all sound, water and 

electromagnetic types of wave. Diffraction effects cause light of a wavelength 

larger than the aperture to be lost and therefore any aperture with a finite size will 

cause diffraction and hence its resolution will be limited [1]. Systems with a focal 

plane array detector do not use apertures, but an array of detectors. Therefore, 

diffraction-limited spatial resolution is possible at each wavelength.  

 

In terms of single point mapping, the sample upon the stage has to be moved point 

by point which is a time consuming process. Array detectors improve acquisition 

time.  Linear array detectors are available, typically consisting of a 16 to 28 pixel 

array. The sample on the stage, however, still has to be moved line by line. Spectral 

imaging utilising a focal plane array (FPA) detector, typically consisting of 64×64 

or 128×128 elemental pixels, is the most advanced and fastest technique. A two 

dimensional FPA detector captures the full field of view at each wavelength 

simultaneously with no movement of the stage. This enables the ability to collect 

thousands of spectra at one time, creating hyperspectral images [2]. 
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The field of view is related to the spatial resolution, where spatial resolution 

describes the minimum distance that is required to resolve and detect two adjacent 

objects. Magnification is a ratio of the physical area of the array detector (number 

of pixels) divided by the area of the sample field of view; therefore higher 

magnifications used with the same detector would image a smaller sample area [2]. 

 

2.3.4 │ FTIR Photoacoustic spectroscopy (PAS) 

The photothermal class of techniques involve an impinging light beam which is 

absorbed by the sample, altering its thermal state. This thermal state change can be 

manifested as a change in temperature or sample density, for example.  

 

Photoacoustic spectroscopy is a photothermal technique where modulated infrared 

radiation is absorbed by a sample in a gas microphone cell and the optical properties 

of the sample dictate the wavelengths of radiation that are absorbed. This absorption 

induces a temperature oscillation in the sample at depth x and width dx, proportional 

to P0(1-R)βe-βx  where P0 is the incident power, R is the fraction of incident light 

reflected by the sample surface and β (cm-1) is the absorption coefficient of the solid 

sample for the wavelength  [10].   

 

The infrared beam is modulated so that the cyclic warming and cooling of the 

absorbing sample occurs faster than the sample can expand and contract in 

appropriately. The thermal waves that are generated as a result propagate through 

the sample and into the gas layer within the photoacoustic cell. The waves decay 

according to the thermal diffusion length s where  is the thermal diffusivity of the 

sample and f is the modulation infrared beam frequency (eq. 23). The subsequent 

pressure wave is detected by the microphone that generates a voltage that is 

amplified and finally processed by FTIR spectrometer.  

 

(23) 
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The key advantage of photoacoustic spectroscopy is that only the absorbed light is 

converted to sound thus scattered radiation is not detected [11]. In other vibrational 

spectroscopic methods, if the wavelength of the IR used to probe the cells is similar 

in size to the cell nucleus, significant Mie scattering from the nucleus can occur. 

This can result in distortion of line shapes and observable shifts in peak positions. 

 

2.3.5 │Cell culture  

In mammalian cell culture, the cells are typically cultured in plastic flasks or wells 

in a suitable environment of culture medium with appropriate nutrients. All renal 

carcinoma cell lines studied were cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM) with 1% L-Glutamine and 10% foetal calf serum (FCS). Both are media 

supplements that support cell growth of cells that have high energy demands. 

 

Cells are cultured in a humidified atmosphere with 5% carbon dioxide (CO2) at 

37˚C to simulate real mammalian physiological CO2 conditions.  The blood in the 

human body contains a partial pressure of 40 mmHg CO2, which is close to 5%. In 

the blood, CO2 exists in the bicarbonate form (hydrogen carbonate, HCO3
-), acting 

as a pH buffer to allow for fluctuations in nutrient, gas and metabolites. Maintaining 

CO2 at 5% in cell culture ensures the same amount of CO2 is dissolved in solution 

as the bicarbonate. [12]  

 

Depending on the cell type, cells may be suspended in solution during culture, or 

will attach to the bottom surface of their container, either directly onto the tissue 

culture plastic, or a substrate such as a glass slide. Adherent cells attach in-vitro 

similarly to the in-vivo process where adhesion is mediated by cell adhesion 

transmembrane proteins [13]. Once cells have reached an appropriate density, cells 

are detached from the substrate by tryptic digestion of the cell adhesion proteins.  

 

2.3.6 │The use of chemical fixatives  

Care must be taken to consider the experiment setup that permits the researcher to 

obtain the optimal spectra for the investigation in hand. Variations of sample 
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preparation will have a significant effect on the quality of the spectra.  For example, 

cells can be dried, chemically fixed or probed when live. It is known that the IR 

spectra of cellular chemical components will change with hydration level. 

Dehydration will cause an irreversible change in molecular structure of various cell 

components including cell membranes, ultimately leading cell death caused by an 

increase in membrane permeability. 

 

Mourant et al. [14] reported the significance of air drying M1 Fibroblast cells and 

their cancerous equivalent, MR1 Fibroblast cells. In dehydrated cells Protein Amide 

II shifted with a decreased wavenumber and reduced intensity. Secondly, phosphate 

absorption bands of RNA and DNA (1050-1150 cm-1) of dried cells were not as 

clearly defined as those of cells in aqueous media which displayed much narrower 

bands.  However the use of an aqueous media translates to strong water absorption 

resulting in an unattainable protein amide I (1575- 1710 cm-1) measurement.  

 

For both investigative research and medicinal application, sample fixation is a more 

practical method, although it is critical to match the method of fixation with the 

intended analytical technique. Some types of analysis can be incompatible with 

certain fixation techniques with varying degrees of artefact contribution observed in 

the spectra.     

 

Formalin fixation at a 4% concentration is a widely utilised fixing agent in the 

biomedical sector and at low concentrations preserves lipid, phosphate and protein 

components without significant influence to the cellular infrared spectrum [15-17]. 

Cross-linking fixation via aldehydes is very effective for proteins and nucleic acids, 

forming intra- and intermolecular covalent bonds between adjacent amine-

containing groups through a Schiff acid-base reaction.  

 

Fixation by alcohol involves dehydration by chemical removal of water from the 

sample. The potential problems of dehydration are shrinkage and the removal of 

soluble components from the cells.  A cell in a hypertonic environment has a higher 

concentration of solute in the environment than in the inside of the cell, making the 
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net flow of water move out of the cell. Ethanol fixation has also been shown to 

poorly preserve lipid structure [17]. 

 

2.3.7 │Supporting multidiscipline techniques   

2.3.7.1│ Cytotoxicity sulforhodamine B (SRB) assay 

The SRB assay is one of the most used methods for in vitro cytotoxicity screening 

for determining the IC50, which is the concentration of agent needed to inhibit a 

given cell process by half. In this case, the process is cell proliferation measured by 

protein quantification. Sulforhodamine B is a fluorescent dye with uses spanning 

from laser-induced fluorescence, to the quantification of cellular proteins of 

cultured cells. 

 

SRB is an aminoxanthene dye with two sulfonic groups which binds to the basic 

amino acid residues under mild acidic and consequently dissociating under basic 

conditions. SRB binds to the protein components of cells that have been fixed in 

trichloroacetic acid (TCA) in a stoichiometric reaction and therefore the quantity of 

dye extracted from stained cells is directly proportional to the cell mass [18]. 

 

The SRB assay has a high level of sensitivity, adaptability to a 96-well plate format 

(Fig. 2.4) and also a good endpoint stability due to the fixing process, meaning the 

assay is not only applied in scientific research, but on larger-scale screening, such 

as at the National Cancer Institute (NCI) [18]. The assay is often compared to that 

of the tetrazolium dye, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT).  

 

The MTT assay has the advantage of detecting only viable cells whereas the SRB 

cannot distinguish them. This is because the MTT assay requires cellular activity to 

reduce the colourless tetazolium dye to its purple coloured formazan dye form. This 

may mean that IC50 values determined may be slightly higher than that of MTT, but 

this does not detract from the ability of the SRB to detect cytotoxic effects.  
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The major disadvantage of the MTT assay, however, is that some compounds can 

directly interfere with MTT reduction without having any effects on cell viability 

and SRB assays are rarely affected by this interference [18].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.7.2│Label-free liquid chromatography mass spectrometry (LC/MS) 

Liquid chromatography–mass spectrometry (LC/MS) is a powerful tandem 

technique that combines the physical separation capabilities of liquid 

chromatography with the mass analysis capabilities of mass spectrometry. In brief, 

a LC/MS system comprises of a high-performance liquid chromatography column 

(HPLC) connected to a mass spectrometer through an ionising interface. The HPLC 

system can practically separate any dissolvable compound, while the mass 

spectrometer can then ionize the separated solution, providing a molecular weight 

for each peak component.  

 

Figure 2.4 │ SRB-stained cell protein aggregates in a 96 well plate reader. Cells were seeded at 
ascending densities to establish the optimum density for the cytotoxicity assays using the renal 
carcinoma cell lines 
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Mass tags can be introduced into proteins or peptides metabolically, by chemical 

means, enzymatically, or by spiked synthetic peptide standards. Most label-based 

quantification approaches include limitations such as complex sample preparation, 

the demand for high sample concentration and incomplete labelling [19] Instead, 

quantitative, label-free approaches have been introduced. [20-21] In contrast, label-

free quantification aims to correlate the mass spectrometry signal of peptides, or 

peptide sequencing events with relative or absolute protein quantities directly [22]. 

 

An LC-MS/MS system can fragment the parent ion into a distinctive pattern, 

separating daughter ions for identification and quantisation [23]. The MS/MS 

spectrum is comprised of peptide fragments resulting from collision induced 

dissociation. MS/MS spectral matches use the un-interpreted peaks in a peptide 

fragment spectrum to match to a theoretical fragment spectrum in a sequence 

database. In a protein ID experiment multiple peptides are usually found and all of 

their fragment spectra are used to correlate to a protein. The larger the number of 

peptides identified, the greater the confidence in the protein correlation.  

 

In order for a sequence database search algorithm to perform peptide and protein 

ID, a number of constraints are places as the MS/MS data heterogeneity is rich. The 

process typically initiates with an enzyme specificity constraint, using index 

searching. Theoretical tryptic peptides are generated and mass lists pre-made from a 

protein database. Next the parent mass of the intact peptide is matched to a short list 

of database peptides. The theoretical fragment masses are compared to the 

experimentally derived fragment spectrum. The peptides are then ranked by how 

many of the fragment masses match the theoretical fragment masses in the sequence 

database. If more than one peptide is searched all of the peptides found are 

correlated to their prospective proteins and the protein with the greatest number of 

well correlated peptides is usually the most significant hit and most programs 

include a probability number for the proposed match. 
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2.3.7.3│ Western blotting 

Gel electrophoresis enables analytical separation of small protein quantities, 

working on the principal that charged molecules migrate in an electric field. A 

polyacrylamide gel is used as the stationary phase because it is solid and easier to 

handle. Polymerisation of the gel occurs in situ between two glass plates, made to a 

recipe of suitable porosity so that the proteins migrate in the electric field 

appropriately [24]. The porous gel acts as a molecular sieve, where small molecule 

move faster through the gel and the largest ones are slow, or may not even move at 

all. The key feature of the gel is the detergent sodium dodecylsuphate (SDS), a 

hydrophobic tail and a negatively charged sulphate group. The protein sample itself 

it also dissolved in SDS prior to introduction to the gel and it denatured because of 

it. The SDS molecules attach to the protein by the hydrophobic tail while the 

negatively charged SDS swamp the native protein charge. A major advantage is that 

SDS also solubilises water-insoluble hydrophobic membrane proteins so that they 

may also be studied. When the SDS-protein complexes are electrophoresed on the 

SDS gel they all move towards the anode and separation is dependent of the size of 

the molecules. The result is a band of proteins, visualised by Coomassie or Ponceau 

blue staining [24]. 

 

To make the proteins accessible to antibody detection they are transferred from the 

gel to a nitrocellulose membrane by electro-blotting, which uses a current to pull 

proteins from the gel onto the membrane. It is necessary to first block any 

interaction between the membrane and the antibodies used to detect the target 

protein as the membrane itself is chosen for its ability to bind protein. Blocking of 

non-specific binding reduces background noise at the end result and eliminates false 

positives. This is achieved by the addition of a dilute protein milk solution which 

attaches to the membrane in all areas where the target proteins have not attached 

[25].    

 

To detect the target protein a primary antibody and a secondary antibody is 

required. After non-specific blocking, the primary antibody is incubated with the 

membrane. Primary antibodies bind with high affinity to their unique target antigen 

and are generated when a cell culture or host is exposed to the target as part of the 
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immune response. The secondary antibody is added to recognise the primary 

antibody and has an enzyme attached to it. When a luminescent substrate is exposed 

to the enzyme on the secondary antibody, chemiluminescence occurs, proportional 

to the amount of target protein staining. This is recorded by a CCD camera that 

quantifies the result in terms of optical density [24].  

 

2.3.7.4│ Fluorescence activated cell sorting (FACS) 

FACS is a powerful method used to sort cells at high purity. Individual cells in 

solution flow through a liquid chamber that passes through one or more laser 

beams, causing light to scatter. Fluorescent dyes in the cell also emit light at certain 

frequencies.  The way the light bounces off each cell gives information about the 

cell’s physical characteristics. Light bounced off at small angles is called forward 

scatter. Light bounced off in other directions is called side scatter. Forward and side 

scatter are used for preliminary identification of cells and to exclude debris and 

dead cells. Forward Scatter measures approximate cell size, and side scatter 

measures the granularity of the cell [26].  

 

Cell structure or function can be investigated by fluorescent staining. For example, 

FACS can be used to study DNA cell content. Propidium iodide (PI) and Hoechst 

dyes bind to DNA and become fluorescent. Some Hoechst dyes can enter live cells. 

DNA staining can be used to study the cell division cycle. Relative DNA content 

shows the proportion of cells in G1, and S and G2M phases. By using a DNA 

binding dye such as propidium iodide, a DNA Histogram can be obtained, profiling 

the DNA content thereby identifying each cell cycle phase [27-28]. 

 

2.4 │ Experimental Methods and Materials  

2.4.1│Cell culture protocol  

A cell cryovial, removed from storage in liquid nitrogen, was left to warm up for 15 

seconds. There were approximately 3~5 million cells from cryovial contained cells 

from a confluent T75 flask (A flask which has capacity of 75 cm2 surface area). The 

cryovials were warmed in a water bath at 37ºC until the last slither of ice liquefied 
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in the vial. After transport to a biological safety cabinet the cryovial contents was 

aspirated and dispensed in a drop wise manner into 15 mL falcon tube containing 

Dulbecco’s Modified Eagle’s Medium (DMEM). 1 ml of the media was added to 

the original cryovial and aspirated and put back into the falcon tube containing cells 

in media, to ensure the complete removal of any residual cells left in the cryovial. 

The contents of the tubes were then centrifuged for 1600 rpm for 5 minutes to form 

a cell pellet at the bottom of the tube. The culture media was removed and the cells 

were re-suspended cells in 6 mL of fresh, complete culture media (DMEM 

containing 10 % foetal calf serum (FCS) and 1% L-glutamine).  

 

For sub-culturing with a cell density of 1 in 3 creating a new cell passage twice a 

week, the cells/media were distributed in 2 mL aliquots into new T75 flasks 

containing 9 mL of complete culture media and incubated at 37ºC with 5% CO2. 

 

2.4.2│FTIR sample preparation 

2.4.2.1│Cultured slides 

For sample preparation using infrared slides, the substrates (MirrIR or calcium 

fluoride CaF2) were sterilised in 70% ethanol (EtOH) for 1 hour and left to dry for 1 

hour. The sterile slides were then placed in 6-well plate tissue culture plastic.  

Culture medium from an 80% cell confluent T75 flask was removed and the cells 

were washed twice in PBS (10 ml for each wash). Trypsin (2 mL) was then added 

and the flask was placed back into the incubator at 37˚C for 1 minute. Following 

this, the flask was removed from the incubator firmly tapped to loosen cells from 

the bottom of the flask. Using an optical microscope the flask was checked to 

ensure that the majority of cells have detached from the flask bottom. Culture media 

(4 mL) was then added so that the FCS contained within the media neutralised the 

effect of trypsin and no further proteins were digested from the cell surface.  The 

contents of the flask was removed and centrifuged at 1600 rpm to obtain a cell 

pellet. The media was removed and replaced with fresh media (1 mL). The cell 

pellet was aspirated before a 10 L aliquot containing cells and media was removed 

and mixed with 10 L of Trypan blue. 10 L of the mixture was pipetted onto an 
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improved Neubauer hemocytometer to determine the estimated concentration of 

viable cells (unstained by Trypan blue) per 1 mL in the sample.  The cell density 

was then adjusted to the required density needed for each well containing the IR 

slide (typically to achieve a total starting concentration of 1×105 cells per well) and 

incubated at 37ºC with 5% CO2 for the required period of time. When required, 

cells were fixed by removing the growth medium, washing twice in PBS and then 

adding 4% formalin (in PBS) to each well. The samples were left for approximately 

40 minutes before removing the cell cultured-slide. The slide was then rinsed in 

deionised water by dipping in three times with 2 seconds each dip and then left to 

air-dry. 

 

2.4.2.2│Cyto-spinning for single cell experiments  

For single cell work the cells must be proportionally dispersed throughout the 

sample. Cyto-spinning is means of doing this to achieve spread out single cells. 

Conveniently, the cells can be fixed in their Falcon centrifuge tube and used at any 

time. Using cell pellet of predefined density, cells are re-spun in PBS (X2) to 

remove all traces of media and then suspended in 4% formalin for at least 40 

minutes. Fixed cells were spun at 800g for 5 minutes using 200 l aliquots. After 

spinning it was important to leave the samples to air dry for 24 hours before 

washing with de-ionised water, as the centrifugal force may have squashed the cells 

onto the slide, but washing with water straight away might have loosened them. For 

particularly small cells that may ‘bounce’ off the slide during the spinning, a 5 

minute spin at 400g then a further spin for 5 min at 800g was performed to ensure 

firm plating.  

 

2.4.3│FTIR methodology 

2.4.3.1│’Bench-top’ single point FTIR Spectroscopy 

Single point transflection spectra were taken using a BioRad FTS 7000 equipped 

with a liquid nitrogen-cooled MCT detector and a KBr beam-splitter, attached to a 

microscope using WinIRPro Software (Varian Inc., U.S.A.). The cells were viewed 

on a movable х,y stage using a 15× objective lens. The aperture was opened to a 
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size of 250 μm2 to sample a large population of cells. Sample images were ratioed 

against a background spectrum of a blank MirrIR slide that had been acquired 

before every new sample spectrum. 

 

2.4.3.2│Single cell Synchrotron radiation FTIR spectroscopy (SR-FTIR) 

SR-FTIR single point transmission spectra were acquired on the SMIS beamline at 

the French Synchrotron Facility Soleil (Saint-Aubin, France) using a Nicolet 

Continuum XL microscope equipped with an MCT detector. The size of the 

aperture was adjusted to match the diameter of the cell such that it was fully 

illuminated, typically 12-16 m2. Sample spectra were ratioed against a background 

spectrum of a blank MirrIR slide that had been acquired before every new sample 

spectrum. 

  

2.4.3.3│Focal plane array (FPA) imaging FTIR spectroscopy 

Transflection-mode FTIR imaging spectroscopy was performed using a Varian 670-

IR spectrometer coupled with a Varian 620-IR imaging microscope. The 

microscope was equipped with a 128 x 128 pixel focal planar array detector and a 

10 × eye-piece coupled with a 15 x IR objective lens. Each pixel covered a 5.5 µm x 

5.5 µm sampling area; the hyperspectral image covered a total area of 700 µm2 

consisting of 16,384 spectra. The hyperspectral image was collected in the 850-

3700 cm-1 range, at a resolution of 4 cm-1 with 128 co-scans for the sample and 

background. Sample images were ratioed against a background spectrum of a blank 

MirrIR slide that had been acquired before every new sample spectrum. 

 

2.4.3.4│Photoacoustic spectroscopy (FTIR-PAS) 

Measurements were taken using BioRad Win-IR Pro® software (Varian Inc., USA, 

formerly BioRad) with an MTEC (Model 300) photoacoustic cell (MTEC 

Photoacoustics, USA) coupled to a Biorad FTS 6000 spectrometer. Per spectrum, 

256 scans were co-added using the triangular apodization function in rapid scan 

mode with a mirror velocity of 0.32 cm s-1, acquired at a 16 cm-1 spectral resolution 
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and ratioed against a carbon black spectrum. The contribution of the substrate to the 

spectra was removed by subtracting the spectrum of a blank MirrIR substrate. 

 

2.4.4│Cytotoxic SRB assay 

Before cytotoxic SRB assays may be performed, an initial seeding density assay 

must assess the starting requirements of the assay, which can differ depending on 

the nature of the cell. Cells were seeded at increasing densities between 0 and 8000 

cells/well (Fig. 2.4) for a range of renal cell carcinoma cell lines (2220R, 2245R, 

2246R, 2247R, A-498 and Caki-2) .The optical density readings for the experiments 

were plotted against initial seeding density to determine the optimal starting point 

which would be just before the log phase of growth. On all cell lines this was 

determined to be approximately 3000 cells per well (Fig. 2.5).  
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To deduce inhibitory concentrations (IC) for the drugs against the renal cell lines 

Caki-2 and A-498, the widely used sulforhodamine B (SRB) cytotoxicity assay was 

implemented. Cells were seeded (3000 cells in 100 l medium per well) in 

triplicates and left for 24 hours to ensure cells were well-established and adhered to 

the bottom of the well plate. A range of 12 drug concentrations between 0.15 and 

20.0 M were used by the addition of drug/media (100 L at twice the desired 

Figure 2.5│ Determination of cell density for the SRB assay using 6 renal cell lines, 2220R, 
2245R, 2246R, 2247R, A-498 and CAKI-2. Levels of fluorescence recorded for the SRB stained 
protein aggregates, excited at a wavelength of 490 nm. An appropriate density at the start of 
exponential growth at 3000 cells per well was selected for all renal cell lines used. 
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concentration) to the established cells in media (100 L) giving the correct final 

concentration range. Each concentration point was performed in triplicate. For the 

control group, media only was added (100 L). The well plates were incubated at 

37°C for 3 days in 5% CO2. After 3 days the media was discarded and wells washed 

with PBS (X2) (100 L). The remaining cells were fixed with TCA (100 L; 10% 

w/v double distilled (dd) H2O), refrigerating at 4˚C for 1 hour. The wells were 

washed with PBS(X2) (100 L) and dried at room temperature (RT) for 1-2 hours. 

The cells were stained with SRB (100 L; 0.4% w/v dd H2O) and left for 15 

minutes at RT. The plates were then washed  with acetic acid (1% w/v dd H2O) 

until the acid ran clear, then dried at RT for 1-2 hours. The protein residues were 

then re-suspended with Tris-HCl (100 L; 1.5M; pH 8.8) and agitated on shaker for 

5 minutes before reading on a Versamax plate reader (Molecular Devices) at 490 

nm absorbance. Each concentration point was repeated in triplicate as was each 

experiment to obtain mean absorbance values. 

 

2.4.5│Label-free liquid chromatography mass spectrometry 

(LC/MS) 

The LCMS sample preparation and instrument operation was conducted by the 

Biological Mass Spectrometry Facility, Paterson Institute for Cancer Research, 

University of Manchester.  

 

For each cell line, cells were grown to confluence in three T75 flasks for cell lysis. 

The adherent cells were treated with four PBS washes (25 ml) and aspirated. Cells 

were then scraped into a solution of triethyl ammonium bicarbonate (TEAB) buffer 

(500 l; 500 mM), sodium dodecyl sulphate (SDS) (0.05%) and PPase inhibitors I 

and II (both at 1%, Sigma Aldrich) and stored on ice for 5 minutes. The cell lysates 

were spun (4˚C; 1600 g) for 10 minutes and the supernatant transferred to a fresh 

tube. Cell lysates were separated into aliquots and stored at -80˚C.  

 

Protein concentration was measured using 2D Quant Kit (GE Healthcare) as per 

manufactures instructions. In brief, the protein lysates are pelleted by centrifugation 
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and re-suspended in an alkaline solution of cupric ions, which bind to the 

polypeptide backbones of any present protein. A colorimetric agent is then added 

which reacts to unbound cupric ions. The colour density is inversely related to the 

protein concentration of the sample.  Protein concentrations were calculated for the 

cell lines as 2245R [0.905 g/l]; 2246R [1.329 g/l] and 2247R [2.211 g/l]. 

Samples were scaled to a 20 g reaction with a dilute of TEAB (500 l; 500 mM), 

SDS (0.05%) and PPase (protein phosphatase) inhibitors I and II (both at 1%). The 

reducing agent tris(2-carboxyethyl)phosphine) (TCEP) (2 l) was added used to 

break disulphide bonds within and between the proteins. The protein samples were 

then incubated for 60 minutes at 60˚C.  

 

After allowing the samples to cool, proteins were alkylated with the cysteine 

blocker methyl methanethiosulphonate (MMTS) and incubated for 15 minutes at 

room temperature. Blocking any free cysteine residues prevents formation of new 

disulphide bonds. Tryptic digestion was performed at an enzyme: substrate ratio of 

1:10 (2 g trypsin to 20 g protein). Sequencing grade trypsin (20 g) was re-

suspended in TEAB (1 ml, 500 mM) and 100 l of this stock was added to each 

protein sample vial, resulting in a final reaction volume of 125 l with an SDS 

concentration of 0.01% in the digest. The samples were incubated at 37˚C with 

gentle agitation for 24 hours before quenching the digest reaction by addition of 

formic acid (475 l, 1%). The final solution therefore contained approximately 20 

g digest on 600 l [33 ng/l]. Each LCMS injection at 15 l equated to 

approximately 500 ng per injection. 

 

Peptides from each sample were analysed a total of 5 times. The inlet method of 

choice was a Nano-Acquity ultra performance liquid chromatography (UPLC) 

system (Waters). 500 ng of peptide was loaded onto a Waters C18 Symmetry trap 

column (180μm ID, 5 μm, 5 cm) in water, 0.1% (v/v) acetonitrile, 0.1% (v/v) 

formic acid at a flow rate of 7 μl/min.  Peptides were then separated using a Waters 

NanoAcquity bridged ethylene hybrid BEH C18 column ((75 um ID, 1.7 um, 25 

cm) with a gradient of 1 to 25% (v/v) of acetonitrile, 0.1% formic acid at a flow rate 

of 400 nl/min. 
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The nano-liquid chromatography (nLC) effluent was sprayed directly into the LTQ-

Orbitrap XL mass spectrometer aided by the Proxeon nano source at a voltage 

offset of 1.8 KV. The mass spectrometer was operated in parallel data dependent 

mode where the MS survey scan was performed at a nominal resolution of 60, 000 

(at m/z 400) resolution in the Orbitrap analyser between m/z range of 400-2000 

(target value of 1 million ions, maximum fill time of 500 ms). Dynamic exclusion 

was enabled to prevent the selection of a formally targeted ion for a total of x 

seconds.  nLCMS data was acquired for 50,000 multiply charged ‘features, 10,000 

of which MSMS data was  also acquired.    

 

All the nLCMSMS data was imported into and processed by Progenesis LCMS vx 

(Nonlinear Dynamics).  Progenesis generated peak lists files were submitted to 

Mascot vy (Matrix science) for a database search using the following criteria. 

Database was Uniprot vx restricted to human with a precursor tolerance of 20 ppm, 

fragment tolerance 0.9Da, enzyme specificity trypsin, allowed missed cleavages.  

The false discovery rate was calculated with the use of decoy search. Progenesis 

LCMS calculated the relative abundances of all the multiply charged features 

detected.  The most significant features were selected that had a fold change >2.47 

and an ANOVA value (P) = 2.85e-5 with Power ≥0.9995.  

 

2.4.6│ Western blotting 

The Western blot was conducted by the Genito-Urinary Cancer Research Group at 

the School of Cancer and Enabling Sciences in the Patterson Institute for Cancer 

Research, University of Manchester.  

 

In preparation a 13.5% electrophoresis resolving gel was prepared for sodium 

dodecyl sulphate polyacrylamide gel electrophoreises (SDS-PAGE). The following 

were components were added into the blot holder: Milipore water (2.6 mL), tris 

(1.5M; pH 8.8; 1 mL), acrylamide (4.1 mL), SDS (10%; 185 L), ammonium 

persulfate (APS) (10%; 36 L) and tetramethylethylenediamine (TEMED) (18 L). 

Ethanol (2 mL) was added on top of the gel to remove air bubbles and to prevent 
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oxygen from getting into the gel which could oxidise it and inhibit polymerisation. 

The gel was left for 10 minutes to polymerise, after which the ethanol layer was 

removed and the gel was washed with Milipore water.  

 

The stacking gel comprised of Milipore water (2.37 mL), 

tris(hydroxymethyl)aminomethane  (0.5M; pH 6.8; 1 mL),  acrylamide (0.59 mL), 

SDS (10%; 34 L), ammonium persulfate APS (10%; 16 L) and 

tetramethylethylenediamine (TEMED) (8 L) was loaded into the resolving gel in 

the blot holder, and a comb was inserted to create the protein loading wells. The gel 

was left to polymerise for a further 10 minutes. The gel plates were connected to the 

Western blot apparatus and the electrophoresis buffer tris-buffered saline and 

Tween 20 (TBST) was pored into the chambers to allow for electric current.  

 

Sample preparation: For protein reduction, ß-mercapto-ethanol (BME) (20 µL) was 

added to a ×4 loading buffer (80 µL) comprised of tris(hydroxymethyl) 

aminomethane (0.5M; pH 6.8; 25 ml); glycerol (20 ml); SDS (10%; 160 mL), 

Milipore water (14 mL) and bromophenol blue (40 mg). To each of the cell line, 10 

l, 8l and 5 l of BME in loading buffer was added to the protein lysates at 27.2 

g, 13.7 g and 6.7 g respectively; a total of 9 samples to load. The samples were 

boiled for 5 minutes before being microcentrifuged (30 seconds at 8000 g), and 

loaded into the gel wells. The gel was run at 60 V for 5 minutes and then 130 V for 

1.5 hours.   

 

Wet gel transfer: The SDS-PAGE gel was stacked next to a nitrocellulose 

membrane, centred in between two layers of filter paper and two sponges, all 

submerged in cooled transfer buffer comprised of TRIS base (3.03 g), glycine (14.4 

g), methanol (200 mL) and Milipore water (800 mL).  To remove air bubbles a 

pipette was used as a roller.  The sandwich was then submerged in the transfer tank 

so that the proteins migrated from the gel towards to the nitrocellulose membrane at 

the positive electrode (taking 1.5 hours at 100V). At the end of the transfer Ponceau 

blue staining was used to confirm the presence of proteins on the membrane. The 

membrane was kept in a container filled with TBST (a mixture of tris-buffered 
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saline and TWEEN 20) comprised of NaCl (8 g), TRIS base (3 g; pH 7.4), 0.1% 

TWEEN 20 (Polysorbate 20 detergent) (1 mL).  

 

Antibody Staining: A 0.3% membrane blocking milk (0.15 g Marvel in 50 mL 

TBST) was used with a SNAP ID system under manufacturer protocol (Milipore). 

For the primary staining, 10 l of Histone H2A Antibody (Cell Signalling 

technologies) was used in 3 mL milk and 2 l in 5 mL milk for the anti-rabbit 

secondary antibody solution. A glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) antibody was used as a control to confirm protein loading quantities (4 l 

in 3 mL for primary; 2 l in 5 mL for anti-rabbit secondary antibody). To obtain the 

blot images, the membranes were treated with chemiluminescence developer 

supplied with the SNAP ID kit and exposed in a BioSpectrum Imaging System 

(UVP) for 5 minutes.   

 

2.4.7│ FACS sorting 

A-498 cells were seeded at 5×105 cells in Falcon (T25) flasks. After 24 hours, 

agents KF0101, KF0113, KF0501 and 5FU were added at IC25 and IC50 and were 

left for 24 and 72 subsequent hours.  For the control group no agent was added to 

the cells. After the appropriate time the media from each flask was removed, 

containing dead cells. The viable cells remaining adhered to the flask were washed 

with PBS. The cells were trypsinised, removed and centrifuged. The cell pellet was 

re-suspended in the smallest possible volume of PBS and agitated. PBS (1 mL) was 

added to the cell suspension, transferred to Eppendorf tubes and spun (800g; 5 min). 

The supernatant was aspirated and the Eppendorf agitated to break up the pellet. Ice 

cold EtOH(1 mL; 70% in H20) was added and the Eppendorf vortexed to prevent 

cell clumping. The cells were fixed for 30 min at RT. Cells were adjusted to 

approximately 5×105 cells/ mL and washed twice in PBS (in 1% BSA). Cells were 

spun (1000g; 5 min) and re-suspended in staining buffer (1 mL) comprised of 

propidium iodide (50 mg/mL), Triton–X (0.1 % v/v), PBS and ribonuclease A (50 

mg/mL). Cells were incubated at RT for 20 minutes, protected from light.  The cells 

were sorted using an Influx FACS analyser. Samples included cells treated with 
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5FU and KF1 at IC50 concentrations for 24 hours and 72 hours after agent 

introduction. Untreated cells were also sorted as a control for both time periods.  
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Chapter 3 │ Spectral Pre-processing and Analysis  
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0 A R T SI I I I I   

3.1 │Spectral Pre-processing 

3.1.1 │The influence of light scattering 

Incident IR light with intensity I0 may be partially reflected IR, scattered IS and 

absorbed IA upon interaction with a sample. The remainder of light will be 

transmitted IT. According to the law of conservation of energy, the energy balance 

(eq. 23) must be:   

 

 (23) 

 

 

To evaluate IA, ideally, I0 and one of either IS, IT, or IR is measured, with zero 

contribution from the other intensities.   

 

Light scattering is the redirection of light that occurs when the incident light (an 

electromagnetic (EM) wave) encounters a non-homogeneous obstacle, i.e. the 

scattering sample.  Light scattering, however, is not as straight-forward at Figure 

3.1 suggests as it not simply a case of electromagnetic waves bouncing off the 

surface of the sample [1].  

 

The EM wave will interact with the particle; periodically perturbing the electron 

orbits within the particles constituent molecules at the same frequency as the 

electric field (of the incident light wave). Electron cloud perturbation results in an 

Figure 3.1 │The interaction of incident light and the sample [44] 
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induced dipole moment, due to periodic charge separation within the molecule. The 

oscillating dipole moment causes the molecule to re-radiate the light in all 

directions. The majority of light scattered by the particle emits at the same incident 

frequency, which is termed elastic scattering (Figure 3.2).  

 

 

 

 

 

Rayleigh and Mie scattering describe two forms of elastic light scattering. Rayleigh 

scattering concerns small spherical particles much smaller in diameter than the 

wavelength of the incidence and scattered wave and usually exhibit as gaseous, 

aerosol form in the nanometre range [1].   

 

Mie scattering, however, applies to a general theory of the scattering of 

electromagnetic radiation by homogenous spherical particles. The formulae and 

calculations are more complex than those of Rayleigh scattering for both absorbing 

and non-absorbing spherical particles with no boundary on particle size.  (Rayleigh 

scattering is simply a limiting case of Mie theory for particles much smaller than the 

incident wavelength).  

 

The Van de Hulst approximation for Mie scattering efficiency is descriptive of a 

non-absorbing spherical particle [2]. Biological samples, however, are absorbing 

materials and can exhibit severe scattering. In recent advances, the approximation 

Figure 3.2 │The interaction of the incident light as an electromagnetic wave, inducing 
temporary dipole moments in the electron clouds of the sample molecules. As a result scattered 
light is emitted at the same frequency as the light of incidence [45]. 
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was modified to describe absorbing materials, coining the term RMieS (Resonant 

Mie Scattering). 

 

As Mie scattering depends non-linearly on α, the product of the radius and the 

imaginary part of the refractive index of the scatterer [3] (eq. 11) the approximation 

was modified by using a refractive index spectrum of a reference, rather than using 

a constant value.  

 

The mid infrared range studied for biological materials is typically  ~4000–700 cm-

1, equating to wavelengths of 2.5–14 m. Incidentally this range is of similar 

magnitude to a biological cell and its cellular components [4].  

 

Aside from the refractive index, there are a number of significant properties that 

affect the severity of the scattering sample. Firstly, scattering is more severe when 

the scattering sample is closer in diameter to the wavelength of light. Another factor 

is sample uniformity. A flat surface will not give rise to scattering and IR substrates 

are polished to high standards for this reason. An uneven surface will cause some of 

the incident light to be scattered in such a direction that it will not reach the 

detector, resulting in a 'false' absorption profile [5].  

 

Three types of biological material were considered comprising of a microtomed 

tissue specimen, an adhesive cultured cell and cell that has been detached by trypsin 

and cytospun onto an infrared substrate. The spectrum of an isolated cell that has 

been dropped or deposited onto a slide such that is has no protein attachments to the 

substrate will present the most severe RMieS scattering. Not only is the cell 

smallest in diameter, closest to the wavelength of incident light, it is relatively 

spherical (Fig. 3.3c). The cultured cell will have extended across the surface of the 

substrate, appearing larger and relatively more uniform than the previous cell (Fig. 

3.3b). A tissue specimen will be larger and more uniform, displaying the least 

amount of RMieS scattering. A uniform sample layer, such as a film of Matrigel, 

however, will not display scattering (Fig. 3.3a).      
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Figure 3.3│ Schematic diagrams illustrating the occurrence of RMieS scattered light emitted from 
biological sample and reaching the detector. A matrigel film of uniform thickness will display no 
scattering (a). An adhesive cell will be fairly larger than the incident wavelength of light but will 
not be as uniform. (c) A single cell that has been spun onto a substrate will be most spherical and 
closest to the incident wavelength of light and will therefore exhibit the most severe scattering 
perturbations within its infrared spectrum.
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The consequences of Mie scattering in an affected spectrum include broad 

oscillating baselines, shifted peak positions and distorted peak shapes. The 

oscillating baseline is a remnant of non-resonant Mie scattering, which the 

Extended Multiplicative Signal Correction (EMSC) algorithm developed by Kohler 

et al. successfully removes [3].  

 

 

Another notable Mie distortion can be observed as a classic negative dip near the 

amide I region of the fingerprint at ~1750 cm-1, formerly known as the ‘dispersion 

artefact’.  This artefact is now understood to be a consequence of absorbing Mie 

scattering materials, such as biological samples. The RMieS-EMSC correction 

algorithm combines the corrective benefits of EMSC and additionally removes the 

‘anomalous dispersion artefact’ to a considerable degree (Fig. 3.4); if not 

completely in some circumstances. This, however, can only be determined with 

simulated data, where the ‘true answer’ for the sample spectrum is known.  

 

The RMieS-EMSC algorithm works by linear regression with the use of an 

appropriate reference spectrum, such as a uniform layer of Matrigel, which works as 

the next best solution to a reference of a pure absorbance spectrum. The initial 

RMieS corrected spectrum will exhibit spectral information from the reference and 

so improvements are made by iteratively looping the RMieS corrected output and 

Figure 3.4│An example of a highly RMieS scattering single cell, acquired at the SMIS 
beamline at Soleil, Paris. The spectrum has been corrected with the iterative version of the 
RMieS-EMSC algorithm with 100 iterations. The cell was ~12 m in diameter and had been
cytospun onto CaF2. 
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feeding that into the algorithm such that the new corrected spectrum becomes the 

new reference spectrum and the original raw sample spectrum is then evaluated.  

 

3.1.2 │Spectral derivatives 

Derivative spectra, obtained by differentiating spectral intensity with respect to 

wavelength, have a number of uses.  

 

Flat baselines can be achieved as baseline drift is removed with the use of spectral 

derivatives. Narrower bandwidths i.e. higher resolution of differential spectra 

potentially allow for subtle differences between spectra to be more easily resolved. 

To resolve overlapping bands, mathematical derivates are used to narrow their full 

width at half height value (FWHH). First-order derivative spectra measure the 

change in the peak slope, with the absorbance peak maxima coinciding with zero on 

the y-axis of the derivative spectra.  

 

Odd derivatives typically have a dispersive character whereas the even derivates 

have a symmetrical band shape, parallel to the original band [1]. Therefore the 

second derivative can be more useful for spectral interpretation as the peak 

frequency identical to the original peak frequency.  

 

The drawback of implementing derivatives is a cost in the SNR. Noise is higher 

than in non-derivative spectra and becomes progressively worse as the derivative 

order increases, as observed in Figure 3.5. 
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Figure 3.5│ A typical infrared spectrum from a biological cell (upper) and its first (middle) 
and second derivative transformations (lower).
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3.1.4 │Fourier self deconvolution 

Fourier self deconvolution (FSD) is another mathematical procedure that allows the 

width of spectral bands to be narrowed. It is a deconvolution approach as the 

inherent line shape function of each band in the spectrum is altered. FSD aims to 

reduce the bandwidth without affecting positional or area. The FWHH can often be 

reduced by as much as a factor of 2 without introducing excessive noise [1]. Over-

deconvolution can occur, however, whereby the line width has narrowed to such an 

extent that the line shape adopts sidelobes. A contribution of sidelobes from two 

adjacent peaks can lead to a mis-identification of a new peak. FSD can be a 

powerful tool under correct use. Conversely, it can also result in misleading 

interpretations.   

 

3.1.5 │Vector normalisation 

It is fairly common place in chemometric analysis of FTIR spectra to normalize the 

derivatives during the pre-processing step before analysis to remove thickness 

differences between sample spectra.  

 

To carry out vector normalisation, the average value of the absorbance is calculated 

for each spectral region. This value is then subtracted from the spectrum such that a 

new average value equals zero. Finally, the spectra are scaled such, that the sum 

squared deviation over the indicated wavelengths equals one [6]. 

 

3.2 │Spectral Signals of Cancer Bio-molecules  

Fourier transform infrared spectroscopy monitors the vibrational bending and 

stretching modes of molecules that are resonant with the frequency of infrared. The 

wavelengths at which these groups absorb the infrared radiation are measured, 

resulting in a unique spectroscopic fingerprint with relative intensities dependant 

upon sample composition. FTIR is an attractive option for biomedical applications. 

Sample preparation is minimal, simple, reproducible and non-destructive to the 

material and usually, depending on the material type, only small quantities are 

required, such as micron-thick tissue specimens for example. 
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Absorbance peaks in vibrational spectra correspond to different molecule bonds, 

ratios or conformations of bio-molecules. Differences in the chemical environment 

of these bonds can cause changes in shape, position or intensity of these peaks. 

Spectral analysis of biomaterial is heavily based on the interpretation of spectral 

changes associated with spectral features that dominate the infrared signal at 

specific wavenumbers and Figure 3.6 displays the characteristic peaks from protein, 

lipid, nucleic acid and carbohydrate signals. Underlying contributions from bio-

groups can also contribute to the signal at particular wavenumbers. To analyse 

underlying bands, spectral processing can be performed in an attempt resolve these 

peaks (Ch. 3.1.3/4). 

 

The infrared amide I band can be useful for predicting protein secondary structure. 

The amide I stretching carbonyl mode has been determined to have specific 

frequencies associates with -helices, -sheets, and other characteristic structures 

such as turns and bends and random coils. The approximate wave numbers 

corresponding to the three common structures found in proteins are: -helix, 1650 

cm-1; -sheet, 1632 cm-1 and 1685 cm-1; and random coil at 1658 cm-1 [7].  

 

In a review by Movasaghi et al. [8], it is apparent that spectral interpretation of 

comparable areas of bio-material reveals a good agreement in wavenumber 

assignments, despite the use of different sample preparation techniques, suggesting 

a certain level of confidence of peak position.   

 



 

 

 

83

 

 

Significant research, with a substantial quantity of cancer-related biomaterial, has 

been conducted over recent years with a view to clinical application. Studies have 

included cervical, melanoma, prostate, oesophagus, lymphoma, gastric, endometrial 

adenocarcinomma and fibrosarcoma [9-16]. Many studies have investigated the 

difference in cancer signatures by use of peak ratios, spectral shifts and absorbance 

differences.  

 

As Figure 3.6 suggests, there are a considerable number of spectral peaks that are 

associated with lipid absorbencies in a typical biological sample and hence possible 

biomarkers of carcinoma. For instance, the ratio of methyl (CH3) and methylene 

(CH2) peaks have been assessed in a number of studies. Fung et al. reported on 

differences between normal and malignant epithelial tissue in endometrial 

adenocarcinomma between the membrane lipid methylene stretching mode at 2853 

cm-1 and an asymmetric methyl stretch from cellular proteins nucleic acids and 

lipids at 2959 cm-1 [16]. The ratio between these two lipid markers decreased in 

methyl/methylene in the malignant epithelial tissue, relative to the normal tissue. 

This is said to be consistent with the hypomethylation observed during 

carcinogenesis in other tissues, which may alter gene expression and facilitate 

Figure 3.6│Assignments of the four biomolecular groups in a typical biological spectrum: 
lipids, proteins, nucleic acids and carbohydrates
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mutations [18]. This conclusion was also reached by Maziak etl al [13] who in 

addition found an increase in methylene peak absorption suggested an accumulation 

of triglycerides in malignant tissue.  

 

Conversely, Andrus et al. [19] claimed an increasing CH3/CH2 ratio with increasing 

grade of malignant non-Hodgkin’s lymphoma. Similarly, Yao et al. [20] recently 

found that the lipid ratios of 2925/1460 cm-1 and 1740/1460 cm-1 decreased in the 

cancer spectra, indicating lower quantity of lipids in the colon neoplasm. Liu et al. 

also found a marked decrease in lipid content in papillary thyroid carcinoma [21].  

 

The discrepancy between the findings of Fung and Maziak et al. compared to 

Andrus and Yao et al. suggests that these spectral biomarkers may not be 

translatable to all cancers. For instance, Mordechai et al. compared spectra of both 

cervical and melanoma tissue and found that while a reduction in the glycogen 

carbohydrate was a good diagnostic marker for malignant cervical tissue, the same 

trend was not observed for the malignant melanoma [9]. Despite the lack of 

correlation with these cancers there is a striking case to support a relative reduction 

in glycogen in malignant tissue, compared with non-malignant tissue.  

 

The glycogen/phosphate ratio with absorbance intensities at 1030 and 1080 cm-1 has 

been investigated as a marker in malignant tissue. Reduced glycogen and increased 

phosphate levels were found in cancer of the cervix [11], prostate [12] and 

oesophagus [13]. The mutual trend may be indicative of malignancy due to an 

increased metabolic turnover, and is explored further in chapter four. 

 

Perhaps the most obvious spectral signals that exhibit characteristic differences in 

malignant samples will be the peaks associated with nucleic acids due to the 

differences in genetic sequencing.  A difference in the phosphodiester symmetric 

and anti-symmetric stretching bands associated with the sugar-phosphate backbone 

of DNA and also phosphorylated proteins and phospholipids has been observed in 

many studies.  Pronounced increases in these bands have been observed in 

malignant cervical and gastric samples [11, 15]. Yao et al. found a peak shift to a 
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higher wavenumber in the phosphodiester band at 1080 cm-1 in malignant tissue 

relative to benign colon neoplasm [20].  

 

For ribose in particular, it has been observed that malignant samples display an 

increased level. Mordechai et al. found the RNA/DNA ratio at 1121/1020 cm-1 

increased in malignant cervical and melanoma tissue [9]. This result is supported by 

the findings of Andrus et al., where an increase in ribose content at 1121 cm-1 was 

seen to correlate with an increase in the 996/966 cm-1 ratio, another index of 

RNA/DNA, with increasing malignancy grade in lymphoma [19].   

 

While Maziak et al. observed an increase in the nuclei-to-cytoplasm ratio in tissue 

samples of adenocarcinoma of the oesophagus, the relative amount of DNA 

increased and the content of RNA decreased, suggesting the opposite to the studies 

by Mordechai and Andrus et al. [13].  

 

The research suggests that while there are spectral markers that consistently 

discriminate differences in the biochemistry between non-malignant and malignant 

biological samples. The trends of these markers, however, appear to differ and seem 

to be cancer specific. In future research, now that there is increased understanding 

about the issue of the ‘dispersion artefact’, there will hopefully be an increase in the 

number of studies that concentrate on spectral assignments at the single cell level, 

which may give us increased understanding about how we can relate any infrared 

biomarkers to the biological processes that govern their change.  

 

3.3 │Chemometric Techniques for Spectral Analysis  

3.3.1 │Principal component analysis  

PCA is a method of finding patterns in a set of data, highlighting similarities and 

differences when patterns are difficult to find in data of high dimension. When a 

dataset is comprised of two variables, the dataset is two-dimensional and therefore 

fairly easy to analyse. An infrared spectrum, however, will include hundreds or 

thousands of data points, depending on the chosen resolution and spectral range. 
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The data is ‘n dimensional’ and extremely complicated to interpret. Therefore 

spectroscopists regularly use PCA as a way to explore the reasoning behind which 

particular spectra may class together and what spectral features may determine their 

classification. There are several examples of the use of this technique in 

characterising cancer cell lines [22-25]. 

 

The initial dataset coordinates are transformed into new versions in order to display 

the variance of the experimental data much more clearly [26]. The principal 

components are calculated in such a way so that the largest amounts of variance are 

covered. They consist of linear combinations which are weighted sums calculated 

from the initial variables, which are the absorbencies measured at each wavenumber 

in a spectrum. In terms of spectroscopy, the new linear combinations do not relate 

to particular spectral bands, but a collection of bands, each with different weighting 

or variance contribution to the PC.  

 

The input matrix is the experimental observation data consisting of absorbance data 

points of particular spectrum at a particular wavenumber. The raw data is usually 

mean centred initially the mean is subtracted from each spectrum, producing a 

normalised data set with mean of zero [26].  

 

Variance is a measure of the spread of data within a data set, very similar to 

standard deviation, only applies to one dimension.  Covariance is calculated in PCA 

as data of more than one dimension can be assessed and can allow comparisons of 

how much two dimensions will vary with respect to one another. Positive 

covariance occurs when two dimensions increase together, i.e. they vary together in 

positive correlation. If covariance is negative, then one dimension increases while 

the other dimension decreases. Zero covariance indicates that the dimensions are 

independent of each other. If there are more than two dimensions in a data set then 

more than one covariance can be calculated and a covariance matrix is calculated 

[26].  

 

The covariance matrix is then split into the score matrix, which is comprised of the 

scaling coefficients (also known as eigenvalues), and the loading matrix (also 
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known as eigenvectors or principal components).  The loadings or eigenvectors are 

non-zero vectors and can only be found for square matrices that are multiplied with 

a vector that results in a new vector that has been scaled from the original vector’s 

position (Fig. 3.7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eigenvectors allow the most important patterns in a data set to be pinpointed and 

displayed in a PCA plot.  All eigenvectors are orthogonal to one another. This is 

important in PCA as data can be expressed in terms of these perpendicular 

eigenvectors, for example comparing the data in PC1 versus PC2 [26].  

 

Since the calculation of the principal components uses the criteria that the largest 

amount of variance should be covered in the experimental data, the first principal 

component features the maximum variance, with sub sequential PCs carrying 

decreasingly less variance. If the dataset was not mean centred initially, the first PC 

would be equal to the mean of the dataset and the second PC would explain the 

Figure 3.7 │PCA in practice: The raw data (a) is first normalized (b). The axes are then rotated 
to explain maximum variance in the dataset (c). This is shown by the PC1 line in red which 
explains the most variance. The next best explanation is the line through PC2 in green. Each 
data point can be classified as a summation of the contributions from each of those lines (d).  The 
PC1 loading plot will determine the sub-component (i.e. spectral peaks) contributions to 
variance in the PC, each with a different weighting (e). 
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most variance in the dataset. The principal components towards the upper limit 

usually describe miniscule data variance and merely contain spectral noise as well 

as unnecessary information from the experimental spectra. 

 

3.3.2 │Linear discriminant analysis  

LDA is different to PCA in that it directly discriminates data between classes 

whereas PCA only examines the principal component analysis as a whole set of 

data and does not give much indication of underlying class structure [27].    

 

A set of independent variables are used to separate data points based on the 

categorical dependent variables which are the groups that are user defined. New 

variables create a line onto which the centroid of different clustered groups are 

projected as far apart as possible, based on linear combinations of the dataset (hence 

the term linear discriminant analysis is used). If the model is for classification 

purposes the model can be assessed for classification efficiency by a report of 

correctly assigned groups using training and test datasets.  

 

Usually the dataset encompasses a series of principal components which have been 

calculated in PCA prior to LDA. PC-LDA is a method of improving intra-group 

clustering whilst maximising inter-group clustering (Fig. 3.8).   

 

 

 

 

Figure 3.8│ LDA allows for reduction in inter-group variance whilst maximising the distance 
between different cluster groups
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There is, however, a level of subjectivity associated with the technique, namely the 

number of principal components to use. The topic has been debated extensively and 

there are a number of methods offered in the literature to determine this factor, such 

as the Kaiser rule, parallel analysis, Cattell’s scree plot analysis, or simply taking 

the number of PCs that account for a fixed level of variance explained [28-31]. 

LDA will be used in the experimental analysis of various renal cancer cell lines and 

will be further explored and discussed in chapters five and six.  

 

3.3.3 │Cluster analysis 

One method of analysis, k-means clustering, aims to separate data points in k 

clusters in which each data point belongs to the cluster with nearest mean. The user 

is asked to define how many clusters are desired [27].  

 

 

The initial k-means are randomly assigned (Fig 3.9a) and each individual data point 

is grouped to whatever k-mean the data point is in closest proximity to (Fig 3.9b). 

Each k means centre then calculates its centroid based on its acquired data points 

(Fig 3.9c). The centroid of each cluster becomes the new mean (Fig 3.9d) and each 

individual data point surrounding the new mean is grouped. This continues until 

convergence has been reached. 

Figure 3.9 │A simplified demonstration of standard K-means clustering 
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Chapter 4 │ Multidisciplinary Validation of FTIR 

Spectroscopy for Cell Characterisation  
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4.1 │ Introduction and Aims 

 

Evidence suggests that FTIR spectroscopy can provide a means to analyse 

biological material, with an emphasis on clinically relevant research [1].  It has been 

shown to enable identification of cancerous tissue biopsies and in some cases 

provide an estimation of cancer grade with comparable sensitivity and specificity to 

conventional approaches [2-6]. There is also emerging evidence that FTIR could be 

implemented to assess cellular drug interactions that may aid screening for 

therapeutic efficacy in the future [7-11].  

 

There has been a major limitation which has held back the progression of Mid-IR 

FTIR spectroscopy. As previously mentioned (Ch. 3.1), FTIR spectral analysis of 

biological material has been hampered due to spectral distortions associated with 

Resonant Mie Scattering (RMieS).  Examples of such distortions include sinusoidal 

baselines and peak shifts, particularly in the carbonyl(C=O) peak at ~1730 cm-1, 

associated with lipid esters [12].  

 

Until recently RMieS was not fully understood. Measures to avoid the issue 

included simply ignoring the amide I band, or baseline correcting using the rubber 

band method [13]. This involves a conceptual rubber band that is stretched beneath 

the spectrum. A new baseline is constructed where the rubber band touches the 

spectrum at selected points in the spectrum.  This type of correction can introduce 

bandshape and intensity errors. Consequently, spectral results may be mis-leading 

and therefore conclusions formed on the basis of such data are likely to be 

erroneous.   

 

High demands are placed on any clinically-targeted technology in terms of their 

performance, confidence and accuracy. If the spectroscopy community cannot be 

confident in the results of FTIR spectral analysis for bio-materials then it is 

probable it will not be implemented in the clinic. The RMies-EMSC correction 

algorithm has provided a means to increase our confidence in terms of ability to 

separate real chemical information from spectral perturbations caused by physical 
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affects. The algorithm has been demonstrated to work well using simulated data, 

where it was possible to assess the robustness of the correction [14].   

 

The cell lines, selected to specifically test the robustness of the algorithm, the renal 

cell lines were 2245R and 2247R, established from primary kidney resections, and 

2246R derived from a metastatic pleural nodule, derived from different surgical 

specimens from different patients diagnosed with clear-cell renal carcinoma at the 

N.C.I., U.S.A. Cell line 2247R has a Fuhrman nuclear grade 3. No grades were 

reported for cell lines 2245R and 2246R. 

 

For the FTIR-based characterisation of the renal cell lines, three different 

approaches were taken in terms of sample preparation and spectral acquisition, as 

outlined in Figure 4.1.  

 

Figure 4.1│ Schematic diagram of the different spectral methods employed in the cell 
characterisation study: Method I utilises focal plane array FTIR imaging technology with 128 
×128 elements, simultaneously acquiring the hyperspectral image of the sample at a resolution of 
5.5 microns per pixel. Method II uses conventional bench top single point Microspectroscopy 
where the aperture (in blue) is opened to record the average signal of numerous cells (orange) in 
a population. Method III is also single point micro-spectroscopy but utilises a synchrotron 
radiation source for high brilliance, increasing the signal to noise of a single cell spectrum 
relative to a bench top infrared source.  
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Recently factors affecting cell line discrimination using principal component 

analysis have been investigated, such as use of different cell culture media [15]. The 

results indicated that the use of different culture media did not provide the basis for 

chemometric separation in different prostate cell lines. Method I (Ch. 4.2.2) was 

designed to take the idea of this investigation further. Firstly, the cell lines were 

cultured under the same conditions. Secondly, the cells were co-cultured onto the 

same substrate at different points of reference and allowed to reach complete 

confluence. In doing so, more confidence could be placed in the sample preparation, 

i.e. culture media or use of different substrates was not a factor of separation 

between cell lines.  

 

In addition, the use of the glycogen/phosphate ratio at 1030 cm-1/1080 cm-1 peaks 

has been investigated to assess cancer biopsies and is thought to be a metabolic 

marker [2, 16]. Method I provided a means to relate chemical information in terms 

of phosphate and glycogen absorptions to the results of the biological proliferation 

assay to test this biomarker of metabolism, as a high rate of metabolic turnover 

could have a link with a high rate of proliferation.  

 

The second stage of analysis involved single point spectra of the cell monolayers 

using two approaches (Method II, Ch. 4.2.3). Conventional FTIR transflection 

measurements were made as well as measurements by FTIR-PAS, a technique 

relatively free from scattering perturbations (Ch. 2.2.4). Method II provided 

optimum conditions for the FTIR-PAS measurements and so a direct comparison 

could be made with the conventional FTIR approach, using transflection MirrIR 

substrates. It was determined that alternative substrates such as calcium fluoride 

(CaF2), silica chips and quartz gave poorer results in terms of signal-to-noise 

(SNR); the SNR for a CaF2 substrate was 25 compared to a typical spectrum 

obtained from a MirrIR substrate at 88 [17]. It has been proposed that the highly 

reflective silver coating on the MirrIR substrates give rise to a ‘double absorption’ 

effect whereby light reflected off the surface of the substrate, as well as incident 

light, will be absorbed by the sample, further increasing the intensity of the signal 

[17].  
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Single point spectra of a cell monolayer that provide an average signal from a cell 

population radiation whereby hundreds of cells are simultaneously irradiated, result 

in a spectrum with excellent signal to noise and an overall chemical signature of a 

cell population. Method III enabled single cell infrared measurements to be made. 

Good signal to noise spectra for single cells may be obtained with the use of 

synchrotron radiation [18]. The spectrum of a single cell may present more detailed 

information in comparison to that of the average signal from cell monolayers, 

however they typically suffer the most severe spectral distortion due to RMieS. 

Single cell spectra therefore present the biggest challenge in terms of RMieS 

correction.  

 

When implementing the RMieS-EMSC algorithm to assess experimental (non-

simulated) sample data, the ‘true answer’ in terms of result validity could not be 

known. It was accepted that a multidisciplinary approach were required to validate 

corrected experimental spectra. Protein-based techniques namely LCMS (Ch. 

2.3.7.2) and Western blotting (Ch. 2.3.7.3) were employed to validate results from 

the FTIR spectroscopy analysis. 

 

 

4.2│Experimental Methods 

4.2.1│ Proliferation 

All three cell lines were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

with foetal calf serum (FCS) (10%) and L-glutamine (1%), grown at 37˚C in a 

humidified atmosphere (5% CO2) until confluent. Cells were seeded at a density of 

1x105 cells per well in a six well plate, one for each day. At each time point cells 

were removed. To do this, the cells in each specific well were pre-washed twice in 

phosphate buffered saline (PBS) before trypsin (1 mL) was added and incubated at 

37˚C for approximately 3 minutes to detach the cells. After cell detachment DMEM 

media with 10% FCS was added and the cells were transferred to Falcon tubes for 

centrifugation (800g for 5 minutes), along with the PBS washes. A Trypan blue 

exclusion assay was performed for the proliferation characterisation. Total viable 
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cell number per day was counted using a hemocytometer and a ratio of 1:1 Trypan 

blue: cells in media. The Trypan blue dye permeated the membranes of dead cells 

which were excluded from the count. For robustness each time point would be 

counted with triplicate wells, taking the average result as the final count.  

 

4.2.2│FTIR method I: Imaging of dual-cell monolayer 

The targeted positions for 2245R and 2247R cells were marked on the non-

reflective side of the MirrIR substrate. Micro-droplets (1000 cells in 20 l /media) 

were positioned on top of the IR reflective surface such that the two cell type micro-

droplets did not mix (Fig. 4.2). H20 (1 mL) was added to the tissue culture plastic 

well holding the slide and incubated for 15 minutes to allow the cells to adhere 

without drying out. Media (DMEM with 10% FCS, 1% L-Glutamine) was then 

added to submerge the slide. The cells were left to proliferate until 100 % 

confluence was reached. 

 

 

 

 

 

 

 

 

  

 

 

 

Transflection-mode FTIR imaging spectroscopy was performed using the method 

outlined in Ch. 2.4.5.3. The obtained infrared image was then corrected with the 

RMieS-EMSC algorithm with 10 iterations and vector normalised. For analysis of 

Figure 4.2 │Schematic diagram for method I sample preparation: Micro-droplets of 
concentrated 2245R and 2247R cells were placed at designated points on the IR reflective side of 
the substrate. Designated points were marked on the non-reflective side of the MirrIR slide. The 
cells were left to establish as a monolayer until an interface between the two cell types was 
reached. 
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the glycogen/phosphate ratio, the peak heights at 1030 cm-1 and 1080 cm-1 were 

assessed for every spectrum. 

 

4.2.3│FTIR method II: Cell monolayers  

Cells were cultured and prepared for FTIR as outlined in Ch. 2.4.1 and 2.4.2.1. The 

FTIR samples were cultured onto standard size slides (2.5 x 7.5 cm2). Single point 

transflection spectra were taken using the method described in Ch. 2.4.3.1. The 

dataset was acquired with a spectral resolution of 4 cm-1 with 256 co-added scans 

per spectrum. The data comprised of 20 spectra taken from 10 samples per cell line, 

in randomised order and on different sampling days.   

 

The sample preparation of the FTIR-PAS samples followed the same protocol as for 

standard FTIR spectroscopy; however they were cultured onto smaller MirrIR 

substrates (0.5 x 0.5 cm2) to fit the sample chamber of the photoacoustic accessory. 

Measurements were taken using the instrumentation described in Chapter. 2.4.3.4. 

The system was allowed to purge for a period of 4 minutes per spectrum. The data 

set comprised of 20 spectra acquired from 10 samples per cell line.  

 

4.2.4│FTIR method III: Single cell SR-FTIR microspectroscopy  

Cells were cultured then cytospun onto calcium fluoride (CaF2) slides as described 

in Ch. 2.4.2.2. SR-FTIR transmission spectra were acquired on the SMIS beamline 

as described in Ch. 2.4.3.2. 240 spectra were recorded at 4 cm-1 resolution with 256 

co-scans and the size of the aperture was typically 14 m2.  

 

4.2.5│Spectral pre-processing 

All FTIR datasets were transformed in Matlab (The Mathworks Inc.) to second 

derivative with 7 point Savitsky-Golay smoothing and a polynomial order of 3, over 

a selected analytical range of 1825-1015 cm-1. The datasets were finally vector 

normalised and mean centred prior to principal component analysis, performed as a 

single routine in Matlab.  
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4.2.6│Amide I analysis 

Fourier self deconvolution (FSD) and curve fitting was performed using Omnic® 

software (Thermo Electron Corp.). The Fourier self-deconvolution (FSD) process 

can be manipulated to optimise the result and therefore it is not a quantitative 

solution. It does, however, enable an estimation to be made for protein secondary 

structure. The parameters that can be manipulated include the bandwidth of the 

overlapped bands and the enhancement factor. The enhancement factor is a measure 

of the degree to which features are revealed and determines the ‘strength’ of the 

resolving power applied to the data. 

 

FSD was carried out at full band width at half height of the peak (FWHH) at 16 cm-

1 and a resolution enhancement of 1.4 for the spectral range covering the amide I 

band between 1720 and 1600 cm-1. The enhancement factor used was subtle enough 

to avoid over processing the spectrum which would result in distorted and negative 

band shapes of complex functions which no longer describe the data. Peak fitting 

employed a Voigt fitting profile with low sensitivity in order to avoid over-fitting of 

bands (Fig. 4.3).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 │Comparing different FSD spectra from (1) the original mean spectrum of 2245R (2) 
displays the chosen parameters for FSD; a bandwidth of 16 cm-1 and enhancement factor of 1.4. 
The FSD spectrum is similar in shape to the original, but features have been further resolved. (3, 
4) illustrate examples where FSD is over-manipulated; the resulting spectrum is no longer 
similar to the original spectrum. FSD Spectrum (3) has a bandwidth of 16 cm-1 but a greater 
enhancement factor at 2.8 while FSD spectrum (4) has a bandwidth of 32 cm-1 and an 
enhancement of 1.4. 
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4.2.7│Label-free LCMS  

The LCMS sample preparation and instrument operation was conducted by the 

Biological Mass Spectrometry Facility, Paterson Institute for Cancer Research, 

University of Manchester.  

 

Sample preparation is detailed in Ch. 2.4.5. Peptides from each sample were 

analysed a total of five times in five equivalent LCMS injections (Fig. 4.4). A 

technical replicate of 2245R was prepared to ensure consistency in the sample 

preparation technique.  

 

 

 

Figure 4.4 │Schematic for proteomic sample preparation; Protein lysates obtained from whole 
cells are injected into the LC-MS for analysis. A technical replicate was prepared for cell line 
2245R to test the robustness of sample preparation and instrumentation. 
 

4.2.8│Western blotting  

The Western Blot was conducted by the Genito-Urinary Cancer Research Group at 

the School of Cancer and Enabling Sciences in the Paterson Institute for Cancer 

Research, University of Manchester.  

 

The level of the protein Histone H2A expression was assessed by Western blot for 

all cell lines following standard protocol, described in Ch. 2.4.6. A total of nine 

samples were loaded: protein lysates at 27.2 g, 13.7 g and 6.7 g were loaded 
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respectively for each cell line; to ensure loading consistency. For a control, GAPDH 

was also loaded.  

 

4.3│Results and Discussion 

4.3.1│Assessment of growth characteristics  

Cell lines were initially characterised by their morphology and growth pattern. This 

was achieved by seeding each cell line at the same density (1×105 cells per well) 

and monitoring changes in the cell wells over a period of 5 days.  

 

Cell lines 2245R and 2246R were similar in morphology with a long, oval-shaped 

cellular structure and extensive cytoplasm characteristic of clear cell renal 

carcinoma. The 2247R cells, however, were more rounded with stellate growth 

characteristics and radial expansions similar to mesenchymal morphology (Fig. 

4.5).  

 

Figure 4.5│ In vitro photo-micrographs of cell lines over time. Cell lines (a) 2245R, (b) 2246R 
and (c) 2247R were seeded at an initial density of 1×105 cells per well in standard growth 
medium. Morphology and growth patterns were assessed by taking daily photo-micrographs 
with a 10× magnification under phase contrast. 
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A viable cell count was also performed during this study, as described in the 

experimental section (Ch. 4.2.1). The 2247R cell line exhibited a higher 

proliferation rate, in relation to cell lines 2245/6R, resulting in an exponential 

increase after two days (Fig. 4.6).  

 

 

 

 

 

 

 

 

 

 

 

4.3.2│FTIR imaging of the dual cell line monolayer 

A dual cell line monolayer was established by cell culture onto a MirrIR slide 

(experimental section 4.2.2). In terms of growth behaviour, 2245R cells appeared to 

spread, extending outwards across the substrate surface in a 2D fashion. In contrast 

the 2247R cells started to stack on top of each other once 100% confluence had 

been reached across the surface. This can be observed in the optical image where 

the 2247R cells appear much darker than their counterparts due to the higher optical 

density of the 2247R section of the monolayer (Fig. 4.7). 

 

Figure 4.6│Growth characteristics of the renal cell lines: cells were seeded at 1×105 cells initially 
and incubated at 37˚C with 5% CO2 for a period of 5 days. Cells were counted daily using Trypan 
blue; viable cell quantities are plotted for each cell line.



 

 

 

105

 

 

 

 

 

 

 

 

 

 

 

 

To compare the 1030 / 1080 cm-1 glycogen / phosphate ratio, which is said  to be 

indicative of metabolic turnover, a hyperspectral 128×128 image, consisting of 

16384 spectra was acquired from the 2245R-2247R monolayer interface. Figure 4.8 

displays the pre-processing steps applied to the image. The total intensity raw image 

(Fig. 4.8a) maps out the two cell lines, with the more abundant 2247R cell line on 

the upper right-hand side and the 2245R cell line on the lower-left side, as observed 

in the larger optical image (Fig. 4.7). 

 

 Figure 4.8b displays the resulting image if RMieS-EMSC is not used prior to 

vector normalisation, where the total intensity chemistry still appears to distinguish 

between the cell lines. Once the raw image had been RMieS-EMSC corrected and 

vector normalised (Fig. 4.8c,d) the total intensity appeared to be more homogeneous 

across the image.  

 

It was noted that in the 2245R region there are still patches of areas that are thinner 

and this may be due to the fact that the cell line has more contact inhibition, as seen 

in Figure 4.5. 

Figure 4.7│Optical image taken using a 4× objective using the FTIR-Microscope. The 2247R 
cell line appears much darker in colour than the 2245R cell line due to its higher cell density. 
The position of the section used for the FTIR spectral acquisition with a ×36 aperture is 
highlighted in the yellow box: a sampling area of 700 x 700 microns. 

700 700  
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Figure 4.8│(a-d) Total intensity heat maps of the hyperspectral image of the 2245R/2247R 
monolayer during pre-processing and analysis. All intensity maps were auto-scaled in Matlab. 
Low absorbance is shown in blue and high absorbance in red. Images (a,b) display the raw 
intensity image and its vector-normalised format (c,d) Display the pre-processing steps used in 
the analysis. The raw image was RMieS-EMSC corrected with 10 iterations before vector 
normalisation.  (e). The mean spectrum is displayed for the raw (red) and RMieS-EMSC 
corrected spectrum (green). 
 

 

 



 

 

 

107

The RMieS effect in highly confluent monolayers is relatively subtle, in contrast to 

single cell spectra. Use of the RMieS-EMSC algorithm, however, is still required. 

Figure 4.8e displays the mean spectrum of raw and RMieS-EMSC corrected data, in 

where the most notable difference is the correction of the baseline. 

 

After the RMieS-EMSC correction and subsequent vector-normalisation, the peak 

heights of all 16384 spectra were determined at the spectral wavenumbers 1030 and 

1080 cm-1 and ratioed. Figure 4.9 displays the heat map for the 1030/1080 cm-1 ratio 

across the interface of the two cell lines.  A decreasing ratio is said to indicate a 

higher rate of metabolic turnover, where glycogen stores are depleted (Ch. 1.1.4) 

and may be indicative of increasing malignancy [16, 19]. The FTIR imaging result 

does appear to correlate with the higher rate of proliferation in 2247R cells, as noted 

by the cell viability assay (Fig. 4.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9│the glycogen/phosphate ratio intensity image was constructed using the peak 
heights at wavenumbers 1030/1080 cm-1 for each spectrum in the image. (*) shows the rough 
interface between the two cell lines where 2247R was cultured on the upper right hand side, 
and 2245R towards the lower left hand side.  
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4.3.3│Assessment of RMieS-EMSC correction   

As mentioned previously, Resonant Mie scattering is inherent in all spectra from 

biological samples that are not comprised of a thin, homogenous film. Severity of 

the spectral perturbation can depend on the morphology of the ‘scattering object’ 

[12]. The impact of morphology in relation to RMieS has been highlighted by the 

two preparation methods. Mid-infrared radiation has a wavelength range of 2.5-14 

m and therefore samples exhibiting components closer to this range will suffer 

from severe distortion [14] and scattering from the edges of cells may also make a 

significant contribution [14]. 

 

The effect of RMieS is apparent in the spectral datasets for the methods II and III, 

which included single point cell monolayer spectra and spectra of single cells. As 

the cell lines used for the two methods were identical, the only difference was in 

morphology due to sample preparation (i.e. cells were cultured onto a surface in 

method II and cells were detached and spun onto the surface in method III). It was 

therefore been shown that samples of different morphology will have a different 

RMieS profile. 

 

The adherent cells, cultured onto the substrate were able to extend across the 2D 

substrate surface, appearing significantly larger and more uniform in thickness and 

therefore displayed less obvious baseline distortions as observed in the 

corresponding raw spectra in Figure 4.10a.  In contrast the single cells, which were 

lifted off the surface of the tissue culture plastic and cytospun onto substrates were 

typically more spherical and smaller in size (approximately 14 m in diameter) and 

their spectra displayed severe distortions (Fig. 4.10c). Using the EMSC-RMieS 

algorithm the raw absorbance spectra were subjected to 150 iterations of the 

RMieS-EMSC algorithm and the results can be seen in Figures 4.10b and 4.10d 

illustrating the extent of correction to the distorted baseline. As it is difficult to 

suggest how many iterations of the algorithm to use, the general rule of thumb was 

used that the number of iterations increased until the using RMieS scattering 

distortions were no longer apparent.  
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Figure 4.10│The raw and RMieS-EMSC corrected spectra for the cell monolayers (a, b) and 
for the single cell spectra respectively (c, d). Sample spectra were colour coded as 2245R 
(black), 2246R (blue) and 2247R (red). 
 

4.3.4│Principal component analysis  

The PCA results for the FTIR spectral datasets before and after EMSC-RMieS 

correction are shown in terms of their clustering, relative to the FTIR-Photoacoustic 

result in Figure 4.11.  

 

It is apparent that cell line 2247R does display cluster separation, with respect to the 

two other cell lines in the uncorrected score plots (Fig. 4.11a, c). It is probable, 

however, that the different RMieS scattering profile of each cell line had a degree of 

influence in the cluster separation. The uncorrected score plots from the raw spectra 

illustrate that simply ignoring the issue of RMieS can potentially lead to misleading 

result conclusions.  
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Cell classification was desired in terms of the global chemistry differences within 

each cell type, rather than physical effects, such as different RMieS scattering 

profiles due to cell morphology. Figures 4.11b and 4.11d display the PCA score 

plots for data that has undergone RMieS-EMSC correction for the monolayer and 

single cell spectra respectively. The cell line clusters are more distinguishable and 

show a better relation to the PCA score plot from the FTIR-PAS data that did not 

require RMieS correction.  

 

Cell line 2247R aside, the SR-FTIR single cell data (Fig 4.11d) displayed better 

discrimination of cell lines 2245R and 2246R in contrast to the monolayer datasets. 

This may reflect increased technique sensitivity in terms of cell classification and 

may be due to the specific targeting of cells during data collection, whereby the 

aperture is adjusted to capture the dimensions of the single cell itself. In contrast, 

the monolayer technique captures a broader range of cells, and possibly sections of 

surrounding protein secretions and blank substrate sections, which will also 

contribute to the averaged single point spectrum, possibly ‘diluting’ the cellular 

signal. 
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Figure 4.11│ The PCA score plots of raw data and  RMieS corrected data for method II FTIR 
monolayer spectra (a, b) respectively; method III SR-FTIR single cell spectra (c, d); method II 
FTIR-PAS monolayer spectra (e)
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The single cell spectra are most difficult to interpret as they include intra-cell type 

variation; each measured cell may be slightly different due to biochemistry 

associated with cell phase or viability and have complex mean derivative profiles 

(Fig 4.12c) and this is reflected in the corresponding loading plot (Fig. 4.12d). 

 

Analysis of the PCA loading plots generally suggest strong variance in the amide I 

region of the different cell spectra. This amide I variation is clearest both in the 

loading plot for the FTIR monolayer data (Fig. 4.12b), the dataset benefiting from 

the greatest signal to noise in the second derivative form (Fig 4.12a).  

 

The fact that the 2245/6R spectral cluster lies in negative PC2 space whilst the 

2247R cell spectral cluster in positive space of PC2 (Fig. 4.11b), suggests that these 

two groups are anti-correlated and that 2247 will be different in amide I 

composition, relative to cell lines 2245/6R which appear relatively similar. Due to 

the differences in these PCA loading plots, subsequent analysis focused on the 

protein compositions of the cell lines.   
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Figure 4.12│The mean 2nd derivative spectra of the cell lines and the resulting PCA loading 
plots for method II FTIR monolayer spectra (a, b) respectively; method III SR-FTIR single 
cell spectra (c, d); method II FTIR-PAS monolayer spectra (e, f)

2nd Derivative             PC Loading 
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4.3.5 │Estimation of protein secondary structure 

Protein secondary structure was analysed using the mean spectrum for each cell line 

from the Method II, the FTIR monolayer dataset. Deconvolution and curve fitting 

techniques were employed to maximize the amount of information retrieved from 

the complex amide I region. Voigt curve-fitting of the amide I band was used to 

give the best estimation of protein secondary structure, as the fractional areas of the 

fitted component bands are directly proportional to the relative quantity of structure 

they represent. The band centres were approximated to the frequencies observed in 

the deconvoluted spectra. The fitted curves were checked by second derivative 

analysis, whereby underlying peaks and shoulders should be resolved at the 

locations of negative peak minima in the derivative. Band widths and heights were 

allowed to attain best fit values by iteration (the resulting composite spectrum) (Fig. 

4.13). The bands were fitted iteratively and a composite spectrum was created so 

that closely matched the FSD spectrum. Tentative band assignments were made in 

reference to bands characterised in isolated proteins [20]. 

 

 

 

 

The results (Table 4.1, Appendix) estimated a higher occurrence of -helical 

contributions in the 2247R cell line compared to cells lines 2245/6R, which were by 

contrast richer in -structure.  

 

Figure 4.13│The amide I secondary structure curves displaying alpha and beta components 
matched to the superimposed 2nd derivative spectrum at 2.0 units. In determination of the overall 
 ratio, the fitted curve associated with turns and bends ~1690 cm-1 (in grey) was not considered. 
For each cell type, the fitted composite spectrum (crosses) closely matched that of the original 
deconvoluted spectrum (solid line).






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Analysis of protein secondary structure by means of Fourier self-deconvolution and 

curve fitting is only an estimate in samples of such complex biochemistry. The 

assignment of protein secondary structure is not straightforward process and can 

only be applied as a general rule, based on model calculations and previous findings 

from known proteins. Model calculations on the amide I bands of globular proteins 

have demonstrated that the spectral contributions of structural elements other than 

alpha and beta components, such as random coils turns and bends are spread over a 

wide wavenumber region.   

 

A number of experimental issues are presented by use of band-narrowing and 

curve-fitting procedures. Secondary structure prediction accuracy can vary based on 

the band narrowing parameters used [21]. In both FSD and 2nd derivative 

techniques, noise is amplified and noise can be mis-interpreted as a real band [22]. 

A low enhancement factor in the FSD and low sensitivity in the subsequent curve 

fitting parameters were used to avoid this issue.  

 

In order to demonstrate the difference with high sensitivity curve-fitting, the results 

were re-processed, resulting in an increased number of fitted-bands (Fig. 4.14). This 

is a more in-depth estimation of the nature of the protein secondary structure and 

these bands do have references for not only alpha helices and beta sheets, but also 

for random coil, and turns and bends. When analysed in terms of percentage 

expression (Fig. 4.15), the results were in agreement with the initial curve fitting 

using the low sensitivity parameters. The major caveat, however, is that the 

references for these bands are derived from pure protein samples. In an infrared 

spectrum of a complex biological cell, there will be underlying bands from 

macromolecules other than protein signals that are present in the same region. This 

makes any estimation of protein secondary structure difficult to substantiate.    
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Figure 4.14│The repeated amide I secondary structure curves fitted with a higher sensitivity. For 
each cell type, the fitted composite spectrum closely matched that of the original deconvoluted 
spectrum, however in this instance there are more fitted bands. These bands do correlate with the 
spectral wavenumber positions of known alpha helix, beta sheet, random coil, turns and bends, 
however the reference material for these positions is comprised of protein alone [20].  

Figure 4.15│ High sensitivity-fitted bands were analysed as a percentage of -helix, -structure, 
turns and bends, estimated by addition of the areas of all the component bands assigned to each of 
the structures and then expressing the sum as a fraction of the total amide I area. Increased 
expression of -helix structure in cell line 2247R agreed with the first instance curve fitting with 
low sensitivity (Fig. 4.14). 
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Protein analysis by FTIR does give the advantage that whole cells can be probed 

with very little sample preparation and with little disruption to the cell-

biochemistry. It was noted, however, that underlying contributions from other 

biochemical molecules, such as nucleic acids can display absorbance peaks within 

the amide I wavenumber region [1]. It was recognised, therefore, that the analysis of 

protein secondary structure by this process is not ideal.  

 

It was therefore important to investigate the cell line protein difference by other 

means in order to validate such a result. This led to further investigation by means 

of liquid chromatography mass spectrometry and Western blot.  

 

4.3.6 │Proteomic data analysis 

The MS dataset of 58225 features, comprised of both identified peptides and non-

identified molecular entities.  A list of these features was generated in Progenesis 

with information regarding mass to charge (m/z), retention time (min) the retention 

time window (min), charge, significance (anova P value) and maximum fold 

change, the later describing the difference in feature abundance across all cell types. 

For example, if the abundance level of feature X was (20, 20, 40) in 2245R, 2246R 

and 2247R respectively, the fold change would be (1, 1, 2).  

 

The normalized relative abundance for all feature data and each individual injection 

was subjected to PCA for visual protein discrimination between the cell lines. A 

duplicate lysate of one cell line (2245R) was prepared to demonstrate sample 

preparation and MS instrumentation robustness (Fig 4.16).  In a similar stance to the 

FTIR data, 2247R was in contrast from cell lines 2245/6R in terms of feature 

abundance. 
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The normalised injection replicates of MS peptide feature abundance were averaged 

for each cell line and mean centred (Fig. 4.17). The data was analysed separately for 

each cell line for features that were 2.5×106 more/less abundant than the group 

mean. The reasoning behind this chosen threshold was to select for a snapshot of 

features that were most different from mean abundance and therefore most 

discriminatory. These features were matched to peptide sequence and then 

correlated to a protein from the feature data list (Table 4.2, Ch.9, Appendix).  

 

 

Figure 4.16 │ The PCA score plot of peptide feature abundance. Every data point represents a 
single LCMS injection for 2245R (black circle); 2246R (blue triangle) and 2247R (red down-
triangle). A technical lysate replicate was made for cell line 2245R (white circle) showing good 
methodological consistency by grouping with its 2245R counterpart cluster. Cell line 2247R 
protein lysate injections are notably anti-correlated with the other two cell lines in PC1.  
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Figure 4.17│ Analysis of peptide feature abundance related to Figure 4.13. Each peptide 
feature was mean centred for 2245/6/7R (a, b, c respectively). As the dataset contained 
thousands of features, a set of 27 features which were furthest in distance from the mean 
were selected for closer evaluation.  
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The protein was cross-checked with the MSMS protein abundance fold change list 

and secondary structure contributions analysed (Table 4.3, Ch. 9, Appendix). 

 

To create the MSMS protein abundance list, a total of 2700 proteins were identified 

from MSMS sequencing data of 10,000 peptide features. Using p < 0.05, protein 

abundance fold change ×2 or greater, the list was filtered down to 1485 proteins.  

681 proteins in 2247R and 666 proteins in 2245/6R were higher in terms of mean 

protein abundance. 137 proteins were undefined using the strict selection rule that 

abundance of proteins in 2247R had to be lower or higher and not equal to the 

abundance in both 2245R and 2246R. This was to identify discriminatory proteins 

which may have caused the PCA profile of cell line 2247R to be distinctly different.  

 

Databases containing protein secondary structure information were used to 

determine the level of alpha/beta structure. For proteins yet to be structurally 

characterised, secondary structure was predicted (Table 4.3, Ch. 9, Appendix). A 

total of 4 methods of structural identification were used to predict secondary 

structure with descending levels of confidence whereby the next best possible 

method would be used if protein secondary structure information was not available 

for the primary method.  

 

The ‘Primary’ method with highest level of confidence information from protein 

structures found in the DSSP is derived directly from the Protein Data Bank (PDB). 

This data makes the assumption that the protein IMDH2_HUMAN for example will 

be homologous to IMDH2_MOUSE, i.e. they share a common ancestor protein, and 

their structure will be constrained because their function will depend on their 

structure. Differences may have been introduced but in a sequence that does not 

affect structure. Therefore where structure of the human protein is not available, 

structure from other species were used.  

 

The ‘Secondary’ method used alternate identifiers which are results gained from a 

search using different identifiers of the same protein. The ‘Tertiary’ method uses 

available protein structure results from the Basic Local Alignment Search Tool 

(BLAST). BLAST searches find homologous proteins with more than 85% identity. 
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Finally the ‘Quaternary’ method uses results gained from trying to predict 

secondary structure 'de novo', i.e. predicted it from sequence alone. 

 

Differences in peptide feature abundance analysed in Figure 4.17 are summarised 

below (Fig. 4.18). There were 27 peptide features that were notably different in 

abundance from the group mean. The most discriminatory feature was detected at 

966.094 m/z (‘Feature 25’ in Fig. 4.17, 4.18). This feature was notably ‘up’ in 

2247R expression and considerably ‘down’ in both 2245 and 2246R. The best 

peptide match score was 87.07% and was correlated to the protein 

B2R5B3_HUMAN (Table 4.2, Appendix). A protein search in the MSMS ID list 

for 2247R (Previously defined as proteins with twice or more as abundant in 2247R 

than 2245/6R) equated to a histone H2A fragment, and similarly other features of 

notable abundance also highlighted a large difference in subunits H2A (Table 4.3, 

Appendix).  

Figure 4.18 | Summary of MS peptide abundance for selected features furthest from the 
group mean. Details of each feature is listed in Table 4.2 in the Appendix (Ch. 9). 
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4.3.7 │Proteomic validation by Western blot 

To confirm the validity of the label-free method of quantisation and subsequent 

protein identification, a Western blot confirmed protein identification of histone 

H2A and its levels of expression in the cell lysates following standard protocol. 

This was performed in triplicate for differing protein loading levels. Results 

confirmed histone H2A expression in cell line 2247R to be extensively greater (Fig. 

4.19).   

 

 

 

4.3.8 │Correlating FTIR and proteomic results   

For all associated proteins that were identified with secondary structure available, 

the mean alpha and beta components were ratioed (Table 4.4, Ch. 9, Appendix).  

 

The ratios of  contribution to overall secondary structure from the proteomic 

analysis were compared with the FTIR prediction (using the initial, low-sensitivity 

curve-fitting parameters). Both methodological approaches resulted in the same 

trend of estimated protein secondary structure contribution (Fig. 4.20). 

 

 

 

 

Figure 4.19 | Western Blot results: each cell line was loaded with (i) 27.2 g (ii) 13.7 g and (iii) 
6.7 g of protein. GADPH expression was used as a control to assess the consistency of the 
protein loading. Higher levels of histone H2A expression were observed for cell line 2247R.  
 

GAPDH 

Histone 

 i.  45R        46R        47R   │ii.  45R    46R     47R   │iii.  45R   46R    47R
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4.4│Conclusions and Future Prospects 

The main aims of the investigation were two-fold. The initial aim was to use FTIR 

spectroscopy as a tool to characterise cell lines, not by their physical scattering 

properties, but by true biochemical difference, an aim that was previously 

somewhat questionable. Secondly, it was important to link and validate conclusions 

from FTIR spectroscopy to other methods, to increase perspective.  

 

With the use of chemometrics, the RMieS-EMSC corrected FTIR data, global 

cellular chemistry of three renal carcinoma cell lines were focused down to a 

notable protein difference in cell line 2247R, indicating protein secondary structure 

differences. Estimation of these differences predicted a larger abundance of alpha 

helical arrangements in cell line 2247R and comparatively larger -structure in 

2245/6R.    

 

Using state of the art label free proteomics, whole cell lysates were analysed in a 

snapshot of most significant proteins were identified with protein secondary 

structure.  

Figure 4.20 | Comparing the  ratio results of general protein secondary structure for FTIR 
(left) and LCMS (right). 
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Despite both techniques using some degree of estimation, generally both 

approaches resulted in the same trend of alpha/beta ratio, estimated from protein 

secondary structure contributions. 

 

The field of cancer biomarker detection has been likened to ‘finding the needle in 

the haystack’ [23]. It is therefore important to use multiple viable methodologies to 

fully understand complex processes, and in the same instance self-validate findings.  

 

It is hoped that this investigation has helped to prove the legitimacy as FTIR 

spectroscopy as a tool that can be used to aid biomarker discovery in a clinical 

setting.  

 

For example, it has been noted in this study that the glycogen/phosphate ratio is a 

good discrimination marker for different cell lines. Further work on this ratio may 

include progression to primary cell lines, resected from patients to correlate the 

ratio with increasing malignancy grade in renal carcinoma.   
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Chapter 5 │ Discrimination of Renal Cancer cells 

Displaying Stem Cell Characteristics    
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5.1 │Introduction and Aims 

 

As previously discussed, there is a hypothesis that cells displaying cancer stem cell 

properties exist (Ch. 1.3.2). Adult stem cells and putative cancer stem cells are rare 

and due to the lack of specific stem cell markers, making isolating and subsequent 

characterisation of these cells challenging.  

 

One method to enrich for cells which possess many of the characteristics of stem 

cells [1-3] is the Hoechst 33342 dye efflux assay developed by Goodell et al. in the 

haematopoietic system  and has been adapted to solid tissue tumours and cell lines 

in the isolation of a ‘side population’ (SP).  

 

Uptake of the DNA-binding dye Hoechst 33342 is universal in a cell population, 

however, the ability to efflux the dye is restricted to a sub-population. The efflux 

process can be blocked with Verapamil, a calcium channel blocker which inhibits 

the ABCG2 transporter system. Without Verapamil, effluxing-able cells can pump 

out dye, reducing the fluorescent signal. The stem-like cells are called the ‘Side 

Population’ (SP) cells as they appear on the ‘side’ of the main cellular population in 

the FACS profile (Fig 5.1).  

Figure 5.1│ Hoechst 33342 profile of the 2245R renal clear-cell carcinoma epithelial cell line. A 
typical Hoechst 33343 red/blue profiles of 2245R cells stained with Hoechst 33342 prior to 
sorting on a FACS Vantage cell sorter. SP gate was defined using the SP inhibitor Verapamil.
The SP can be sub-sorted into proximal (PSP) and distal (DSP) side populations.  
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The SP itself is enriched for these stem-like cells, but is still heterogeneous. A 

further sub-fraction of cells with greater efflux-ability can be isolated. These appear 

further down the tail of the SP FACS profile. The ‘distal’ SP cells (DSP) are said to 

be more primitive, hence more closely resembling true stem cells [4]. 

 

Characterisation of the SP subpopulations is problematic enough due to the very 

low numbers of cells within each subpopulation, often below the level required for 

traditional cellular and ‘-omic’ techniques. Characterising these sub- side 

population cells is a further challenge, yielding even lower quantities. The use of 

SR-FTIR provided a way to analyse small numbers of single cells. The aim was to 

generate spectral chemical profiles of these small cellular sub-populations which 

could possibly provide more insight into the nature of these rare cells. 

 

5.2 │Experimental 

5.2.1 │FACS Sorting of cell populations  

The FACS sorting and isolation of the cell populations and sub-populations was 

kindly performed by M. Liew in the Genito-Urinary Research Group at the 

Paterson Institute of Cancer Research, University of Manchester.  

 

The 2245R renal carcinoma cell line was cultured in DMEM with FCS (10%) and 

L-glutamine (1 %) at 37˚C in a humidified atmosphere (5% CO2) until 80% 

confluent. Hoechst 33342 staining was conducted according to the method of Addla 

et al. [40]. Briefly, 1x106 2245R cells in 1 ml Hoechst buffer (Hank’s buffered salt 

solution, 10% FCS, 20 mM HEPES, and 1% D-glucose) were stained with 5 mM 

Hoechst 33342 for 90 min at 37°C with continuous agitation (5 Hz). Cells were 

washed and re-suspended in ice-cold Hoechst buffer prior to FACS analysis. 

Hoechst 33342 dye efflux SP was defined by 50 mM Verapamil hydrochloride 

blockade of Hoechst 33342 dye efflux. Hoechst 33342 staining was detected using a 

Becton Dickinson FACS Vantage SE flow cytometer (FACS), exciting at 357 nm 

and detecting Hoechst Blue with a 424/44 broad pass (BP) filter and Hoechst Red 
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with a 675/20 BP filter (Omega Optical, Brattleboro VT) SP, as well as distal- and 

proximal-SP, and non-SP cells were ‘sorted’ based on pre-defined profiles. 

 

5.2.2 │Sample preparation for spectroscopy 

Following cell sorting, the isolated cell populations were fixed in formalin (4 % in 

PBS). The cells were subsequently spun and re-suspended in 500 L of PBS. The 

cells were then mixed to form a homogeneous suspension and 150 L aliquots were 

used for deposition with a cell cytospinner onto CaF2 substrates, as described in Ch. 

2.4.4.2. The cells were initially spun at a gentle 400 g for 5 minutes, then 

additionally at 800 g for 5 minutes. The substrates were left overnight to dry before 

washing with distilled water to remove residual salt, originating from the PBS.  

 

5.2.3 │Data acquisition  

SR-FTIR transmission spectra were acquired on the SMIS beamline of the French 

Synchrotron Facility SOLEIL (Saint-Aubin, France) [5] using the instrumentation 

setup described in Ch. 2.4.5.2. Spectra were recorded at 4 cm-1 resolution with 256 

co-scans. A total of 25 spectra were recorded for each cell type.  

 

5.2.4 │Data analysis 

The raw spectra were corrected with an ATR Matrigel reference spectrum and 100 

iterations of the RMieS-EMSC algorithm [6-7]. The corrected spectra were 

transformed to the second derivative with 7 point Savitsky-Golay smoothing with a 

polynomial order of 3 in Omnic 7.2 (Thermo Electron Corporation).  

 

Analysis was performed on the second derivative corrected spectra with a range of 

1475-1000 cm-1 to achieve maximum chemometric separation between the Non-SP 

and the SP cells. The corrected spectra were then vector normalised and mean-

centred before principal component analysis (PCA), performed in Matlab (The 

Mathworks Inc.). PC-LDA models were generated using SPSS (SPSS Inc.).  
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5.3 │Results and Discussion  

5.3.1 │Sample assessment  

The Hoeschst dye efflux model was used to enrich populations of stem-like cells 

prior to further characterisation and analysis. The dye is known to be effluxed out of 

the cell after several hours or days. At the 1-2 hour time point, however, cells would 

still contain certain levels of dye allowing them to be sorted by their fluorescent 

signals.  

 

The FACS blot (Fig. 5.1) shows an SP ‘Tail’ containing cells with various 

concentrations of dye within. If Hoechst 33342 dye was no longer present their 

signal would fall within the bottom left hand corner of the plot of the cell FACS 

profile threshold and would not be collected for the study.  

 

The Hoechst 33342 red blue FACS profile generated by 2245R displayed a 

Verapamil sensitive SP containing up to 16% (average 6%) of the renal epithelial 

cells. This enabled the isolation of 3 subpopulations for analysis; the non-SP which 

contained differentiated cells and two SP sub-populations. The subpopulations were 

proximal side population (PSP), containing putative transit amplifying cells and the 

distal side population (DSP) which is thought to contain the most primitive (stem) 

cell types.  

 

 

 

 

 

 

 

 

 

Fig. 5.2│(a) Isolated FACS sorted cells, chemically fixed immediately after sorting for 
Synchrotron experiment, spun onto CaF2 slides (b) in vitro photomicrographs of NSP and (c) 
SP cells after 24 hours of cell culture post FACS sorting. 
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Figure 5.2 compares centrifuge cytospun Non-SP cells onto CaF2 slides and 

photomicrographs of the cell types in vitro, after 24 hours of cell sorting. Cellular 

differentiation is illustrated by morphological changes that may occur if the cells are 

not fixed and instead cultured. The Non-SP cells (Fig. 5.2b) begin to extend their 

cytoplasmic boundaries, a characteristic morphology of the clear-cell renal 

carcinoma phenotype. The SP cells remain spherical in morphology more in 

keeping with a stem cell phenotype (Fig. 5.2c). 

 

The cells were chemically fixed in formalin (4%) immediately after FACS (Fig. 

5.2a) for the FTIR experiments. By doing so, the cellular content at the time of 

sorting was preserved and no further differentiation could occur before the spectral 

fingerprint acquisition.  The cells are analysed in a ‘snapshot’ of time, representing 

a controlled and fair comparison. All cell types analysed were typically of the same 

size and appeared spherical by plating the cells onto a CaF2 substrate at a 

predetermined force so that the cells remain intact whilst attaching to the substrate. 

  

5.3.2 │SR-FTIR assessment  

It is also understood that even small differences in cell size may dominate 

chemometric discrimination, as different sizes of cells would correspond to 

different resonant Mie scattering profiles which would be detected in chemometric 

discrimination. This concern, however, was reduced with use of the RMieS-EMSC 

correction algorithm [6-7].  

 

Figure 5.3 presents the mean infrared spectrum with standard deviation of each type 

of sorted cell. The non-side population displayed the greatest spectral variance, 

particularly in the 1250-1000 cm-1 region. This is understood to represent the 

heterogeneity of the non-side population, with single cells more likely than the SPs 

to be present at different stages of the cell cycle at the time of FACS sorting.  
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5.3.3 │PCA of the total dataset  

Changes in cell cycle phase can influence the overall chemical signature of the 

individual cell [8-10]. This is also apparent in the PCA score plot of the total dataset 

(Fig. 5.4a) where the non-SP cell spectra are more dispersed than the side 

population cells of DSP, PSP and SP. PCA separations of different cell lines is more 

straightforward than discriminating differences in a single cell line as there is partial 

overlap between the non-SP and SP spectra, as would be expected. 

 

It is apparent, however, that there is some degree of separation between non-SP and 

SP spectra in PC3. The SP contained a mixture of DSP and PSP cells and therefore 

it was expected that the SP cluster would fall on the same trajectory as the DSP and 

PSP spectra. The associated loading plot for PC3 is displayed in Fig. 5.4b.  

 

As second derivative peak minima are directly aligned to the centre of the 

absorbance peak of the original spectra, the loadings can be interpreted as biological 

references. There are many features that contribute to the differences between the 

non and side-populations. 

Fig. 5.3│ SR-FTIR mean fingerprint spectra +/- standard deviation from single cells of  (a) 
non-side population  (b) side population, (c) sub-side population; proximal, (d) sub-side 
population; distal. For multivariate analysis the range was reduced to 1475-1000 cm-1 and the 
spectra transformed to the second derivative.    
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These include: δas(CH2) scissoring vibration of lipids at ~1468 cm-1; sC=O (of 

COO-) at ~1400 cm-1;  δs(CH3) at ~1380 cm-1;  asP=O (of PO2
-) of phosphodiester 

group of phospholipids, phosphorylated proteins and nucleic acids (arising from the 

phosphate sugar backbone of DNA and RNA) at ~1237 cm-1;  Amide III band 

protein components at ~1240-1310 cm-1, as(CO-O-C) ring vibrations of 

carbohydrates at ~1180 cm-1;  sP=O (of PO2
- ) of phosphodiesters at ~1080 cm-1  , 

s(CO-O-C) of carbohydrates at ~1050 cm-1 and s(C-O) of carbohydrates at ~1030 

cm-1. 

 

For clarity, principal component analysis was repeated for the three specific cell 

types in the dataset, namely, DSP, PSP and Non-SP. Fig. 5A illustrates the resulting 

PC score and plot for PCs 1, 2 and 3, and the loading plot of PC1 corresponding to 

the discrimination of the Non-SP from the SP spectra (Fig 5.5b).  

 

The lipid signals, mentioned in the previous PC analysis, dominate the loadings plot 

of PC1. However, differences in the phosphodiester stretching absorptions also 

remain apparent in the loadings of PC2, along with carbohydrate vibrations (Fig. 

5.5c).  

 

Fig.5. 4│Total dataset analysis (a) PCA plot of PC2, PC3 and PC4 (b) The loadings of PC3. 
Discrimination of the Non-SP cells can be seen through principal component 3.   
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Gault et al. looked into the effect of the Hoechst 33342 dye on cell FTIR spectra as 

a negative control when investigating alpha particle cellular irradiation. They found 

that Hoechst 33342 treatment of cells did not damage DNA.  

 

They also found the binding of Hoechst 33342 did not induce intensity or band shift 

changes in the IR regions characteristic of proteins and lipids and there was only a 

subtle change in DNA conformation. (There was a 4 cm-1 shift in asP=O (of PO2
-) 

centred at 1238 cm-1  to 1242 cm-1 however the sP=O (of PO2
-) centred at 1086 cm-

1 remained unchanged) . 
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Fig. 5.5│PC analysis of the sub-side populations DSP and PSP versus non-SP cell spectra (a) 
the score plot of PC1, PC2 and PC3 (b) The corresponding loadings of PC1 and (c) PC2. Key 
biochemical differences are outlined in lipid, phosphodiester and carbohydrate absorption 
bands 



 

 

 

138

5.3.4 │Qualitative spectral analysis  

As a comparison, the mean second derivative spectra for Non-SP, PSP and DSP 

were qualitatively assessed (Fig. 5.6). There is however, always a danger when 

comparing averaged spectra for a cell type, particularly if one population is more 

heterogeneous, and the sample population is small. This approach was therefore 

more subjective than analysing PCA loadings which take account all individual cell 

spectra. 

 

The assignments [11] of notable differences in the second derivative spectra were; 

(1) δas(CH2) 
 shift from 1464 to 1468 cm-1  between DSP to NSP and an increase 

peak height; (2) Increased peak height for DSP/PSP at 1452 cm-1 (C-H bending); 

(3) Increase in peak height for PSP at 1414 cm-1; (4) δs(CH3) shift from 1384 cm-1  

to 1387 cm-1  between DSP to NSP; (5) DSP is shifted to 1365 cm-1 relative to 

PSP/NSP at 1367 cm-1; (6, 7) Notable absorption bands at 1341 cm-1 and 1331 cm-1 

for NSP; (8) Prominent band in PSP/NSP at 1308 cm-1; (9) Carbohydrate marker at 

1255 cm-1 for DSP/PSP, increasing in peak height and shift to 1258 cm-1 in NSP; 

(10) Increased peak height of asP=O (of PO2
-) at 1236 cm-1 in DSP relative to  

PSP/NSP at 1234 cm-1; (11) Band at 1169 cm-1 shifting to 1173 from DSP to NSP, 

band most prominent in PSP; (12)Possible RNA band at 1115 cm-1 shifting to 1119 

cm-1 from DSP to NSP; (13) sP=O (of PO2
-) AT 1085 cm-1 in DSP/PSP shifted to 

Fig. 5.6 │ Qualitative evaluation of the mean second derivative spectrum for DSP, PSP and 
Non-SP. Differences in spectral shifts are minimal whereas absorbance differences are most 
distinctive.   
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1087 cm-1 in NSP; (14) Glycogen band at 1030 cm-1 for DSP/PSP shifted to 1026 

cm-1 with an increase in peak height for DSP.  

 

In the assessment into the effect of Hoechst 33342 on the cell spectra, Gault et al. 

observed a small shift of 4 cm-1 in the anti-symmetric asP=O phosphodiester  band 

in mean spectra between stained and unstained cells. For the same band in the 

experimental renal data, there was no shift greater than 2 cm-1 between the all cell 

types.  

 

The DSP has a larger asP=O peak height relative to the PSP/Non-SP. Gault et al. 

also observed that the sP=O at 1086 cm-1 remained unchanged [12].  

 

In the renal data of this experiment, a 2 cm-1 shift and an increased absorbance for 

NSP was found relative to the SP subtypes, whereas Gault et al. found no striking 

changes in the lipid and protein signals between stained and unstained cells [12]. In 

the renal data analysis the differences in lipid signals studied in the wavenumber 

range appeared to significantly contribute to chemometric separation. 

 

5.3.5 │Linear discriminant analysis 

To confirm the residing differences between the three cell types, principal 

component–linear discriminant analysis was performed (PC-LDA). LDA optimises 

inter-group separation whilst minimises intra-group separation [13]. Cross-

validation was performed as is highly recommended when classifying a limited-size 

dataset. The model was validated by using a training data set where the algorithm is 

supervised with a priori knowledge of each data type, followed by the use of a test 

data set, introduced to the model as an independent validation.  

 

As it is common practice to input into the model data of reduced dimensionality the 

principal components from PCA were invoked. Reduced data is used to overcome 

issues of over-fitting whereby good classification but poor significance can result. It 

is reported that over-fitting can be seen when using ‘(n-g)/3’components or more, 

where g is the number of groups and n is the total number of data points [14].  
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For the LDA classifier variables, the principal components were calculated in PCA 

for the DSP, PSP and Non-SP dataset (g = 3, n = 75). A total 8 principal 

components were used, a number securely far from the over-fitting threshold (24 

PCs using the equation ‘(n-g)/3’). 8 PCs accounted for 71 % of the total variance. It 

is generally recommended not to use PCs that explain 100 % of variance as this will 

introduce PCs calculated on noise and will cause over-fitting of the LDA data. A 

training set comprising randomly selected data points from the total data set was 

constructed. 15 spectra per cell type were used for the training set (60 %).   

 

Figure 5.7a displays the PC-LDA plot for the training set consisting of 45 spectra in 

total. Relative to the original PCA, the clustering and separation between cell types 

has greatly improved. Results show that the non side population cells are clearly 

differentiated from the side population cell types in discriminant function 1 (DF1). 

The proximal ‘PSP’ cells clustered relatively closer to the non-SP population than 

the distal DSP cells. This is accountable to the fact that the PSP cells share more 

chemical similarities to the Non-SP than the DSP cells share; the PSP cells are on 

the frontier of the SP cell gate in the FACS profile.  

 

The DSP however are most different, separating from the non-SP in DF1 and even 

the PSP in DF2. It has been shown previously that the renal SP from human primary 

cells is a heterogeneous population [15] and that it is possible to sub-fractionate the 

populations based on the dye efflux status of the cells to generate sub-populations 

which are increasingly primitive. The results seem to confirm the existence of 

chemical difference within these sub-populations which can be used to further 

characterise or be utilised as a spectroscopic markers for these cells. 
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In terms of model classification 93.3 % of training spectra correctly classified. Of 

the total dataset only a 3 spectra were misclassified. 6.7 % of DSP and 13.3 % of 

Non-SP were misclassified as PSP.   In cross-validation using the ‘leave-one-out’ 

method, 84.4 % of spectra correctly classified. 13.3 % of DSP and 20 % of Non-SP 

were misclassified as PSP. 13.3 % of PSP were misclassified as DSP.  

 

Figures 5.7b, c and d display the same PC-LDA plot but also include the 

independent validation DSP, PSP and Non-SP datasets respectively. 10 spectra per 

cell type were used to test the algorithm. The correct classification scores of the 

independent validation DSP, PSP and Non-SP dataset are 80 %, 90 % and 100 % 

respectively. In general, the resulting plots and relative scores of each independent 

validation set reveal that the spectra have been correctly assigned. The similarity in 

the phenotype of the sub-side populations is a probable explanation where a small 

percentage of data points have been misclassified.  

Fig. 5. 7│PC-LDA of DSP and PSP versus Non-SP spectra (a) The training set, n=45 (b) DSP test 
set (c) Non-SP test set (d) PSP test set 



 

 

 

142

 

5.3.6 │Further assessment of the distal side population  

PC analysis was performed using only the DSP versus the Non-SP to get a clearer 

picture of the distinction of the non-side population and stem-like cells relative to 

the most separable sub-side population. The DSP are the greatest distance away 

from the non-side population in the Hoechst FACS profile. The chemistry of the 

DSP should be the most distinctive due to the more primitive nature of the cells.  

 

The PCA score plot (Fig. 5.8a) of PC1 versus PC2 accounts for 40 % of total 

variance. The distal side population clearly tightly clusters separately from the non-

side population. The clustering of the DSP suggests that the cells within the DSP 

are more chemically and spectrally homogeneous than the non-SP which appears to 

form two clusters, separated in PC2.  

 

The non-SP variability may be due to actively proliferating cells at various stages of 

differentiation within the overall non-SP population. In contrast the DSP is much 

more likely to be quiescent and more clonal in nature leading to a more uniform 

spectral profile, as it is hypothesised to contain the most primitive stem like cells. 

The noteworthy differences between the distal and non-side populations are shown 

in the PC1 loading plot (Fig. 5.8b).  

 

There are significant phosphodiester and carbohydrate signals but these are 

secondary to the biochemical lipids signatures that dominate the loading plot at 

δas(CH2) ~1468 cm-1 and  δs(CH3) at ~1380 cm-1. 
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Carbohydrate bands are highly loaded in PC2 where the Non-SP separate into two 

clusters. Coupled with the symmetric and anti-symmetric phosphodiester stretching 

bands this suggests differences in metabolic activity, possibly due to cell cycle 

effects. The glycogen: phosphate ratio at 1030/1080 cm-1, a known marker of 

Fig. 5.8 │DSP versus Non-SPs (a) The PCA plot of PC1 and PC2. PC1 separates the DSP and 
NSP populations, whereas PC2 shows clustering in the NSP, indicative of heterogeneity in the 
population (b) the corresponding loadings for PC1 and PC2. 
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metabolic activity [16]. This is thought to correspond to increased metabolic 

activity, as glycogen stores are broken down at a greater rate. The PC2 loading plot 

displays the re-occurring symmetric and anti-symmetric phosphodiester band 

features also seen in Fig. 4b and Fig 5c.  

 

For a final evaluation, the differences in cell chemistry between the DSP and PSP 

cells were analysed (Fig 5.9). Clear separation can be seen between the cell types in 

PC1 shown in the score plot. In the comparison of DSP and non-SP spectra, the 

main differences were highlighted by lipid chemistry. Also highlighted are the 

phosphodiester stretching bands as a significant discriminatory feature.  

 

 

 

A possible explanation as to why the asP=O (of PO2
-) is most apparent in this 

comparison is that the DSP and PSP cells have greater similarity in terms of their 

proliferative and morphological phenotype. When possible differences due to cell 

cycle or overall cellular heterogeneity are removed, it is apparent that the 

phosphodiester stretching bands may be a prominent marker in the distinction of 

these stem-like cells. Differences in the symmetric and asymmetric phosphodiester 

Fig. 5.9 │ The PCA score plot of distal (DSP) versus proximal (PSP) second derivative spectra. 
Sub-side population discrimination is shown in the first principal component (28.1%). The 
loading plot highlights the asP=O stretch a distinct marker, which has also been present in the 
previous loadings comparing NSP to the SPs.  
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stretching bands continually re-occur throughout the analysis and are always anti-

correlated in the loadings plots.  

 

This may be indicative of reported DNA conformational changes where the 

symmetric phosphodiester modifications ~1080 cm-1 were detected as a significant 

marker of putative stem cells in human intestinal crypts [17]. The symmetric and 

anti-symmetric phosphodiester stretching vibrations refer to the central phosphorous 

atom in a phosphodiester linkage (--O--PO2---O--), seen in DNA, RNA and some 

phospholipids. In DNA, the negatively charged phosphorous atom is countered by 

Na+ ions [18].  

 

A recent study [19] of other stem-like cell line populations supports this 

discriminatory band along with a carbohydrate marker at 1054 cm-1.  However,  

rather than looking for a univocal specific maker of stem-like cell discrimination, 

the authors propose using a change in a global absorption pattern as  a better 

approach, particularly monitoring the carbohydrate rich vibrations at 1000-1200 cm-

1, which they report to be a particular stem-cell like discriminator range. Yet 

spectral changes in carbohydrate bands may be more indicative of cell cycle effects. 

This would contribute greatly to chemometric discrimination and therefore it is 

important to bear this in mind when interpreting cell characterisation. The later 

research characterises the stem-like cells during a live cell suspension.  

 

Throughout the time of data acquisition there are a range of variables that may 

affect the absorption pattern of a single cell. For instance, cell viability may be 

reduced and dying cells have previously been reported to have different spectral 

features to viable cells [9]. The spectra may be recording the independent cellular 

response to the non-ideal conditions of their environment for the respective cell 

types. Also considerations would have to be taken into account for the cell 

suspension fluid and the contributions to the spectra. However, if these factors can 

be monitored and perhaps controlled, a live cell approach would be a very useful 

application when monitoring side population cells after subsequent passage, or their 

chemical response to anti-cancerous agents for instance.  
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PCA and LDA were used as part of a data-reduction analysis to elucidate chemical 

difference between the SP and Non-SP cell types. All chemometric analysis was 

performed on the second derivative corrected spectra with a range of 1475-1000 cm-

1 to achieve maximum separation between the Non-SP and the SP cells. The full 

fingerprint region including the amide I and II bands reduced the clarity of 

separation (Fig. 5.10). For example, use of the full fingerprint range 1800-1000 cm-1 

produced a poorer discrimination in PCA in scores for DSP/PSP versus NSP (Fig. 

5.4). The percentages explained by PC1, PC2 and PC3 were 19.8, 13.6 and 11.2% 

respectively for range (44.6% of total variance explained in 3 PCs). If the full 

fingerprint range was used, the values decreased. (15.1%, 10.9% and 9.9% 

respectively, 35.9% in total).  

 

Figure 5.10a is the score plot for PC1 versus PC2 for the full fingerprint range 

where PC1 displays no separation of the different subtypes. In the loadings plot the 

cause of the spread of scores is predominantly due to the amide region (Fig. 5.10b). 

PC2 (Fig. 5.10c, d) displays some separation and the PC2 loadings show distinct 

phosphate and lipid signals are present, along with the amide I and II which still 

appear to worsen the separation (relative to omitting the amide region). In PC3 (Fig. 

5.10e) again there is no separation between the SP and the Non-SP sub types, 

however the Non-SP clusters into two groups. In the PC3 loadings it is the amide I 

and II regions are again largely contributing, along with the carbohydrate 

absorptions, as noted in the comparison of DSP and Non-SP (Fig. 5.8).   
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5.4│Conclusions and future prospects 

It has been successfully demonstrated that it is possible to isolate a side population 

from a human renal cancer cell line as well as from solid tissue. However these 

‘side population’ cells only account for a small proportion of the total cell 

population (typically <5%), creating difficulties for analysis, which increases with 

Fig. 5.10 │The PCA analysis of extended spectral range (1800-1000 cm-1) resulted in poorer 
cell type separation of distal (DSP) versus proximal (PSP) and Non-SP cells using second 
derivative spectra;  (a) score plot of PC1/PC2 and (c) PC2/PC3 and corresponding loading 
plots of (b) PC1 (d) PC2 and (e) PC3.  Prevalent phosphodiester and lipid peaks evaluated 
previously are apparent in PC2 whereas PC1 and PC3 denote intra-cellular heterogeneity 
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the further sub-fractionation required for increasing primitive cell isolation.  It is 

therefore difficult to characterise cell populations of this type by conventional 

biological methods. 

 

High brilliance synchrotron FTIR- spectroscopy made it possible to record the 

spectral fingerprint of these different cell types after FACS. PC and PC-LDA 

analysis confirmed the biochemical differences of these cell types, providing further 

support that the side population contains a different subpopulation of cells and that 

this side population can be further sub-fractionated to give distinct populations 

based on their cellular biochemistry.  

 

Interpreting the cause of discrimination of the cell types revealed variances within 

lipid and phosphodiester signals, whereas carbohydrate and protein signals in the 

loadings plots suggested heterogeneity within the non-SP cells.  

 

It is perhaps the phosphodiester signals that were most revealing, as they may 

represent conformational changes in the DNA/RNA, as well as some phospholipids.  

These are indicated in the loadings plots in Figures 4b, 5c, 8c and most prominently 

in 9b. The anti-symmetric phosphodiester vibrations at ~1237 cm-1 are partially 

overlapped by complex amide III vibrations, whilst the symmetric phosphodiester 

vibration at ~1080 cm-1 can be masked by carbohydrate vibrations. However, with 

the use of the second derivative combined with chemometric data reduction 

techniques, the phosphodiester bands are distinguishable and seem to be a 

significant cause of variance in the biochemical fingerprints of these side population 

cells relative to the general cell population.  

 

Another key factor of cellular distinction in the loadings (Fig. 5.4b 5.5b, 5.8b, 5.9b, 

5.10d) and in the qualitative mean spectral analysis (Fig. 5.6) were shifts and a 

higher absorbance for Non-SP in δs(CH3) and δas(CH2) and a higher absorbance in 

for DSP/PSP at 1452 cm-1 (C-H bending).   

 

At this point, the impact of the differential chemistry results surrounding the SP 

cells can only be speculated. The concluding analysis suggests possible DNA and 
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lipid differences. There may be a link between these features and it is known that 

DNA and phospholipids share a common motif recognizable by proteins [20]. Also, 

it is generally accepted that lipids play both functional and structural roles in the 

nucleus as well as in the plasma membrane and that lipid metabolism in the nucleus 

may be regulated separately from that of the plasma membrane [21]. Perhaps this is 

a possible route of further investigation into DSP evaluation.  

 

In conclusion this novel approach offers considerable potential as a tool to 

distinguish small cell numbers associated with potential cancer stem cells and the 

SP phenotype and may be of particular use in facilitating the understanding of 

cancer stem cell biology.    

 

Finally, it is possible after FACS to obtain live cells which have shown limited cell 

culture of the side population phenotype. Further studies could involve time-course 

experiments, monitoring the rate of differentiation. These cells are also under 

investigation with chemotherapeutic agents and perhaps FTIR spectroscopy could 

shed some light on the responses of these cells to such toxins.  
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Chapter 6 │ Investigating Cellular Response to 

Chemotherapeutics 
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6.1 │ Introduction and Aims 

In the previous chapters, spectral analysis focused on cell characterisation. 

Discriminating the FTIR signatures of different cell lines can be relatively 

straightforward. Comparing differences in cells from the same population, however, 

can be more challenging, as described in Chapter 5.    

 

Cells are said to have specific infrared signatures in terms of cell cycle, viability, 

apoptosis and stress [1-7]. If a chemical spectroscopic signature, unique to a 

particular mode of drug action, was discovered it would be very beneficial in the 

early stages of the drug development process as novel chemotherapeutic agents with 

potential regularly fail during their progression to clinical trial testing. Currently, 

high throughput procedures used in the development of a novel compounds include 

cytotoxicity multi-cell line panel testing and the assessment of agent interaction and 

involvement in parts of numerous biological pathways [8].  

 

Implementing FTIR spectroscopy as a tool in this area would only be appropriate 

for the assessment of global changes in cellular chemistry. Attempting to 

understand the interaction drug activity upon cellular processes is a complex area. 

Despite this fact, there are a number of key questions that may be answered:- 

 

 Is it possible that cellular responses to drugs can be detected in an infrared 

spectral fingerprint and is there a biomarker to monitor this? 

 Is it possible to discriminate between cells that have been treated with 

different drugs that act through different mechanisms / or have different 

modes of action? 

 Is it possible to detect cellular response to drugs in the infrared that is not 

apparent early on by conventional testing? 

 Is it possible to deduce common biomarkers to show cellular response that 

may help to predict drug efficacy?  

 

The cell line model comprised of an established renal carcinoma cell line, CAKI-2, 

dosed with a drug of known mode of action as well as a set of novel gold-based 
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compounds with unknown efficacy. The novel compounds studies were gold 

analogues, KF0101, KF0113 and KF0501, (which will be referred to as KF1, KF13 

and KF5 respectively). 

 

As discussed in Chapter 1, the study of multidrug resistance (MDR) in tumour cell 

lines has led to the discovery of the plasma membrane P-glycoprotein (P-gp) 

molecule. The protein functions as an efflux pump to remove foreign compounds 

such as drugs. P-gp-mediated MDR tumour cells have been found in human cancers 

and are highly likely be a determining factor in negative response to treatments in 

patients [9].  

 

Anti-tumour agents from the platinum family such as cisplatin and carboplatin have 

been widely used in clinical therapy. They have DNA cross-linking activity, 

inhibiting further replication or transcription to inhibit tumour proliferation and 

have received special interest due to their different kinetics and geometries. 

Synergistic treatments can enhance apoptosis, such as combinations of Cisplatin 

with Lexatumumab, a human agonistic antibody that targets a tumour necrosis 

factor [10].  

 

Cisplatin treatment alone, however, performs poorly in RCC due to resistance. 

Altered DNA process and changes involving glutathione and metallothioneins are 

some examples where resistance has developed. This has prompted a recent surge in 

new non platinum drugs and old species have received much attention due to their 

strong tumour cell growth inhibiting effects [11]. The mechanism of action of anti-

proliferative gold complexes is still speculative and due to a vast library of gold 

species with different oxidation states and ligands it is unlikely for there to be a 

unique mode of action to account for them all.    

 

The novel gold compounds of the KF series comprise of two covalently bound 

Au(I) atoms within an aromatic ring with triphenylphosphine ligands. They exhibit 

a high potency in cell toxicity studies and DNA cross-linking assays that indicate 

these compounds should show efficacy in the treatment of carcinomas [12]. It is 

supposed that the highly stable gold(I)-carbon covalent bonds, due to the similar 
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electronegativity of Au(I) and carbon, facilitate the DNA cross linking. This 

increased facilitation may improve activity of these novel compounds in cell lines 

that are perhaps platinum resistant [12].  

 

The use of FTIR as a tool for analysing drug response in cells is relatively new, 

although there are already a number of studies that have investigated this which 

have shown promise [13-15]. In the following experiment, complimentary 

techniques such as proliferation and cytotoxicity assays were employed in parallel 

to infrared spectroscopy to corroborate any possible findings.  

 

6.2 │Experimental 

6.2.1 │Determination of inhibitory concentrations 

To deduce inhibitory concentrations (IC) for the drugs against the Caki-2 cell line, 

the widely used sulforhodamine B (SRB) cytotoxicity assay was implemented 

according to the Nature protocol [16] described in Ch. 24.6. The data was exported 

to Graphpad Prism where it was normalised and plotted in the classic sinusoidal 

logarithmic form to calculate the IC50 values for each agent (Fig. 6.1).  

 

6.2.2 │ Proliferation assay 

Caki-2 cells were added to well plates at a density of 1x105 cells/well and left to 

establish. 72 wells were setup to allow for triplicate measurements over a 6 day 

period. After 24 hours, agents KF1, KF13 KF5 and 5FU were introduced at the IC50 

level determined by a 3-Day SRB assay (3.51, 3.52, 5.32 and 2.39 M 

respectively). For each subsequent day (1–6 days after drug introduction) viable 

cells were identified using Trypan blue dye and then counted using a 

haemocytometer. 
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6.2.3 │ Spectral sample preparation 

The samples were prepared as described in the FTIR single-point spectroscopy 

protocol for sample preparation (Ch. 2.4.2.1). In brief, Caki-2 cells were added to 

well plates at a density of 1x105 cells/well and left to establish. After 24 hours 

agents KF0101, KF0113 and 5FU were introduced at the IC50 level, as determined 

by the SRB assay. At the appropriate time point the cell cultured slides were 

washed twice in PBS and fixed in formalin (4%) for 40 minutes. The slides were 

then dripped in distilled water to remove salt residues.  

 

6.2.4 │Data acquisition 

6.2.4.1 │ Single cell measurements  

SR-FTIR transflection spectra were acquired on the B22 beamline of the British 

Synchrotron Facility Diamond (Oxford) using a Bruker80 V spectrometer equipped 

with an MCT detector and coupled with a Hyperion 3000 microscope. Spectra were 

recorded at 4 cm-1 resolution with 256 co-scans and the size of the aperture was 

adjusted to match the diameter of the cell such that it was fully illuminated, 

typically 15m2. 

 

6.2.4.2 │ Monolayer measurements 

Imaging measurements were taken using a Varian 670-IR FTIR spectrometer as 

described in Ch. 2.4.5.3. Hyperspectral images of 700 x700 m were recorded using 

a spectral resolution of 4 cm-1 resolution with 128 co-scans.  

 

Single point measurements were acquired as described in Ch. 2.4.3.1 with 128 co-

scans using an aperture of 60 x 60 m.  

 

6.2.5 │Spectral pre-processing 

All datasets were subject to the RMieS-EMSC correction algorithm at 150 iterations 

for the SR-FTIR and single-point monolayer data and 80 iterations for the 

hyperspectral images. A Matrigel transflection spectrum was used as the reference.  
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The corrected spectra were transformed to the second derivative with 7 point 

Savitsky-Golay smoothing with a polynomial order of 3 in Matlab. Analysis was 

performed using the fingerprint range of 900-1825 cm-1. The corrected spectra were 

vector normalised and mean-centred before principal component analysis (PCA) 

and discriminant function analysis (PC-LDA) also in Matlab. 

 

6.3│Results and Discussion 

6.3.1 │Cell cytotoxicity  

Gold (I) complexes with labile ligands such as chlorine interact readily with DNA. 

Cisplatin for example, a drug with a cytostatic effect, is an effective TrxR inhibitor. 

However, complexes with tightly binding ligands such as Auranofin, will not bind 

to DNA [11].  

 

A gold compound with multiple phosphine ligands is [Au(dppe)2]+, a tetrahedral 

bi-chelated Au complex, has shown antitumor activity in vitro and in vivo and 

induced DNA protein cross linking and DNA strand breaks in cells[11] .  

 

A similar complex, [Au(dppp)(PPh3)-Cl] was tested at the N.C.I., U.S.A. 29 cell 

lines of a 60 cell line panel and shown to have  IC50 values in the lower M range 

where the cells displayed an apoptotic response with decreased expression of anti-

apoptotic proteins . Gold triphenylphoshine complexes have also shown to have 

IC50 values in the lower M range [17]. 

 

The KF series for the drugs tested displayed similar IC50 concentrations to the 

above compounds, with KF1, KF13 and KF5 values of [3.51 M], [3.52 M] and 

[5.32M] respectively. The KF5 curve, however, did not fit as accurately as the 

other analogues therefore the value obtained was not taken with confidence and 

more repetitions would be needed.  In contrast the IC50 value for 5FU was [2.39 

M], almost one and a half times less-concentrated than the KF series (Fig. 6.1).  
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5FU is typically dosed at 12 mg/(kg day) to cancer patients, giving a plasma 

concentration of [0.75 mM] [18]. It is difficult, however, to relate IC50 values 

obtained in vitro to human in vivo pharmacology. There are many factors that may 

explain why such a concentration is used in the human body including 

bioavailability and pharmacokinetics. The disposition of a pharmaceutical 

compound within an organism can be described by four principal criteria: 

absorption, distribution, metabolism and excretion of a drug (ADME) [19]. They 

influence the drug levels and kinetics of drug exposure to the human body and 

hence influence the performance and pharmacological activity of the compound as a 

drug. For example in drug discovery clinical trials, failures of drug progression are 

often down to clinical ADME. Adverse events or poor pharmacokinetics may be 

observed that are not predicted by animal studies. Drugs may also fail to 

demonstrate the efficacy expected from animal studies or results from early in vitro 

studies [20]. 
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6.3.2 │Single cell SR-FTIR analysis after 24 hours exposure to 

compounds  

6.3.2.1 │Principal component analysis (PCA) 

One of the aims of the study was to determine if there was an obvious, general 

global infrared maker distinguishing cell response to chemotherapeutic agents. 

Spectra of drug-treated cells after 24 hours of drug exposure were assessed against 

the (non-drug treated) control group (Fig. 6.2). There was little difference to be 

observed in the mean spectra for each cell type in general (Fig. 6.2a), although 

subtle differences in absorbance of peaks associated with  δas(CH)2 at  ~1480 cm-1, 

vas (PO)2  at  ~1240 cm-1 and vs (PO2) at 1080 cm-1 were noted for KF1 and KF13-

treated cells.   

Figure 6.1 │ Dose response curves to determine IC50 values for the Caki-2 cell line from 
the SRB assay data (repeated in triplicate). Graphs were created in Graphpad Prism 
using mean values ± standard error. 
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It was difficult to make any distinction between control cells and drug treated cells 

using principal component analysis (PCA) alone (Fig. 6.2b).  This may due to the 

intra-sample heterogeneity observed in the cell populations. Cells exhibit specific 

chemistry in a certain phase of the cell cycle and therefore it may difficult to see 

any chemistry purely associated with drug response.  Another complicating factor 

may be the influence of the agents on the cell cycle. It is known that 5FU does 

affect cell cycle in the S phase; however there is no information on whether the KF 

series will also have an influence.  

 

It is also this reason that analysing these variables by using mean spectra alone may 

be misleading. The mean spectra represent a small portion of a complete population 

Figure 6.2 │ (a) Mean spectra for drug treated cells versus control, (b) PCA score plots and (c) 
Eigenvalue scree plots for determining the number of PCs to use in LDA for (I) KF1, (II) KF13 
and (III) 5FU respectively   
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of cells studied. There may be bias as more spectra from cells in one phase in the 

cell cycle may have been sampled in one group more than group due to chance and 

may not be completely representative of the true cell population.  

 

6.3.2.2 │Principal component linear discriminant analysis (PC-LDA) 

In the previous chapter, PC-LDA was used to classify the cellular sub-types in a 

population.  SPSS software was used, enabling results to be cross-validated in terms 

of categorising cell spectra into distinct groups. A slightly different approach was 

used to assess cellular responses to chemotherapeutic agents. The use of IC50 

values, by their definition, will equate to half the population of cells being affected 

at that specific concentration. The implication for single cell analysis will mean that 

the agent may elicit a cellular response in a given period of time for some cells, but 

not others.  It was therefore unpractical to assume that the cell spectra would fall 

into rigid clusters and it was not the aim to categorise the spectra in such a way. 

Subsequent model testing by the input of ‘blind’ spectra as a means of cross-

validate to the robustness of such distinct classified cell spectra did not seem 

relevant to the samples in question.  

 

PC-LDA was useful, however, as a measure to maximise overall differences in the 

cells treated with different agents in an attempt to detect general trends.  As 

previously described (Ch 5.3), there is no strict formula to know how many 

principal components should be used to for PC-LDA. As sample numbers were 

small, further methods were used in an attempt to assess the number of principal 

components to use in LDA (Fig. 6.2c), rather than simply following the (n-g)/3 

over-fitting rule [21]. The Kaiser rule recommends discarding principal components 

after the Eignenvlaues are no longer equal to or above 1.0 [22]. Another approach is 

to use the number of PCs that explain 95% of total variance. A fourth method 

commonly used is Cattell’s scree plot analysis, whereby the number of components 

taken should equal the point before the plot reaches the ‘elbow’ [23]. Finally, 

Horn’s parallel analysis was tested. M. Watkins suggested Monte Carlo PCA for 

parallel analysis whereby PCA is performed to obtain Eigenvalues for a correlation 

matrix constructed by random numbers, equal in size to the experimental data [24]. 
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The scree plots for simulated and experimental data are compared and the threshold 

is the PC before the experimental plot crosses over the simulated plot [25]. The 

results can be seen in Figure 6.2c where it is apparent that the lowest number of 

acceptable components is four.   

 

The LDA score plots shown in figure 6.2c resulted from four principal components 

that explained 91%, 91% and 89% and of variance in 5FU, KF1 and KF13 

respectively (Fig 6.3a).  

 

 

 

As expected, there was still an overlap of drug-treated and control spectra. Drug 

treated cell spectra were primarily distributed in negative DF1 space and control 

spectra in positive DF1 space for KF1 (Fig. 6.3Ia) and KF13 (Fig. 6.3IIIa). No 

distinction could be seen for 5FU treated cells at this point. It could be argued that 

the cells are showing a greater response to the gold analogues than 5FU at this 24 

hour check point, as separation in DF1 is marginally better. The weighting in the 

KF1 and KF13 loading plots of the 1300-900 cm-1 region, associated with 

Figure 6.3│ (a) LDA score plot using 4 PCs for KF1 (I), KF13 (II) and 5FU (III). (b) LDA 
loadings are displayed for DF1 respectively. 
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carbohydrates and nucleic acids, appears greater than in the 5FU loading plot, 

where the region weighting is considerably less (Fig. 6.3b).    

 

6.3.2.3 │Use of second derivative spectra 

To determine if discrimination between the treated and non-treated cell spectra 

could be enhanced PCA and subsequent LDA was repeated for the second 

derivative-equivalent of the dataset. Generally it was noted that more PCs were 

required to explain the same amount of variance in the 2nd derivative dataset (Fig 

6.4).  

 

 

 

 

 

 

 

 

 

 

 

A possible suggestion is that more PCs may be required to explain the equivalent 

variance. Derivatives assess the rate of change in absorbance with respect to 

wavenumber and consequently the strong amide I and II signals dominate derivative 

spectra and subsequent loading plots. Information from other regions of the 

spectrum with small derivative peaks do not become significant until later 

components are used. As more and more PCs are used, however, more noise 

contributes to the signal and a fine balance must be made.  

 

Figure 6.4│Cumulative variance explained by principal components for the un-derivatised and 
equivalent 2nd derivative dataset 
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6.3.2.4 │Second derivative spectra for LDA using 90% PC variance explained  

To obtain an equivalent ‘variance explained’ value as the non-derivative dataset at 

90%, 8 PCs were used as opposed to 4 PCs. The score plot separation (not 

displayed) was only slightly better at distinguishing the control from the drug-

treated cell spectra.   

 

Loading plot analysis suggested a possible reason for this result. Figure. 6.5a 

displays the DF1 loading plots for the second derivative forms using 8 PCs.   There 

were notable peaks for amide I (~1657 cm-1) and amide II (~1547-62 cm-1) regions 

in the loading plot.  These signals, however, were indistinguishable from the signals 

in the DF2 loading plot (not pictured). Discriminant analysis (DA), like PCA is a 

form of eigen-analysis and for k groups, DA finds the k–1 discriminant axes that 

maximally separate the k groups. In a two group case of LDA, there will be only 

one discriminant function that will be meaningful, i.e. one discriminant axis for the 

two groups.  This indicates that these regions covering the amide bands are not that 

informative in terms of describing different chemical features between the control 

and the drug treated cells at this 24 time point.   

 

6.3.2.5 │Second derivative spectra for LDA using 95% PC variance explained  

To determine if any discriminative features were present in the loadings, LDA was 

re-analysed using 14 PCs, accounting for 95% of variance in the 2nd derivative 

dataset (Fig 6.5b-d). The LDA score plots in all cases showed distinction, 

separating control cell spectra from those treated with the agents (Fig 6.5b).  

 

For the loadings observed for DF1 (Fig 6.5c), there are two common markers that 

stand out that are not present in the loadings of DF2, suggesting that the markers are 

informative with regard to the group separation.  The first is at 966 cm-1, associated 

with C-O stretching of the phosphate monoester group of phospholipids, 

phosphorylated proteins and nucleic acids [26]. This peak in the loading positively 

correlates with 1084 cm-1 peak in KF13 and 5FU and 1051 cm-1 in KF1. The 

assignment of ~1084 cm-1 is mainly linked to a symmetric stretch s(PO2
-) of the 

phosphodiester group of nucleic acids and membrane phospholipids, and partially 
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protein (amide III) . The absorption at ~1051 cm-1 is associated with C-O-C 

stretching of DNA and RNA [26].  

 

The second universal marker of drug-treated cell spectra versus the control is found 

at ~1470 cm-1, connected to C bending vibration of lipids and proteins and 

scissoring vibrations of the acyl chains in phospholipids [26].  KF1 appeared to 

have a unique marker at 1387 cm-1 associated with CH3) bending modes of lipids. 

 



 

 

 

167

 

Figure 6.5 │ KF1 (I), KF13 (II) and 5FU (III) displaying LDA loadings (a) using 90% dataset 
variance from PCA (b) using 95% variance scores and subsequent LDA loadings in DF1 (c) 
and DF2 (d) for the 2nd derivative dataset.  
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6.3.2.6 │Second derivative spectra for multiclass LDA  

Data groups CTL, 5FU, KF1 and KF13 were combined and analysed as a whole 

dataset. Figure 6.6 (I a-c) displays the LDA results of the non-derivative version of 

the dataset with 4 PCs, where no distinction or interpretation of the loadings could 

be made, as found in the two class case previously. 4 PCs explained 90% of 

variance for non-derivative data but only 79% in the 2nd derivative data. Therefore 

an equivalent 9 PCs was used for the 2nd derivative data and there appeared to be a 

vague separation of 5FU spectra in DF2 (Fig. 6.6 (II)). 

 

The variance explained for 95% in the 2nd derivative data equated to 16 PCs (Fig 

6.6 (III)). The KF13 cluster, being furthest from CTL in DF1, suggests that the cells 

are responding, or have been affected  most to KF13 at this 24 time point, This was 

also proposed in the single–drug analysis (6.3a). 5FU clustering appeared more 

distinct in DF2. This is promising as it may suggest that the cells are responding 

differently, or that the drugs act in a different mode to 5FU.   

 

The use of 95 % variance explained and was tested to further resolve differences in 

the highly complex dataset. The markers at 966 cm-1 and 1084 cm-1, seen before for 

the single group analysis were clearly resolved. The extra level of noise introduced 

by adding more PCs did not have an impact from 9 PCs to 16 PCs.    
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There has been some research into the relation of signal to noise contribution of PC 

loads to determine the number of PCs to use in discriminant analysis and there is no 

definite threshold [27]. It has been said that determining the PC cut-off by 

increasing contributions of noise serves as a practical way to deduce a threshold. 

Ultimately, adding more and more PCs will introduce more noise as exampled in 

Figure 6.7; where the first PC to introduce 99% VE was 47. This is definitely a case 

of over-fitting the data, as both the clustering in the DF score plot is perfect, and no 

markers can be resolved above the nose in the loading plot. 

 

 

Figure 6.6 │ LDA score plot (a) and loadings (b, c) for non-derivative format for (I) 4 PCs 
(90% VE) (II) 2nd derivative equivalent (90% VE) and (III)2nd derivative using 16 PCs (95% 
VE)   
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6.3.2.7 │Qualitative assessment of mean derivative spectra  

In further assessment of the mean second derivative spectra for each group (CTL, 

5FU, KF1, and KF13; number of spectra, ‘n’, was 35, 24, 24, 29 respectively), there 

no apparent shift in peak minima (Fig. 6.8a). There were, however, five areas where 

variation was apparent when the derivative mean spectra were overlaid (Fig. 6.8b). 

The peak minima at these positions were at (1)1171; (2) 1155; (3) 1084; (4) 1061; 

(5) 968 cm-1.  These spectral regions are said to be associated with (1) as (CO-O-

C); (2) s(C-O); (3) s (PO2
-); (4) s (C-O) and (5) s (C-O).  

 

There is said to be a triad of infrared peaks which are characteristic of nucleic acid 

vibrations at 1031 cm-1, 1060 cm-1, and 1081 cm-1 [28].  Markers at points 3 and 4 

may highlight differences in two of these associated triad peaks. Marker 3 is 

associated with the phosphodiester bonds of DNA whilst marker 4 is due to 

stretching C-O of deoxyribose. It is likely there are differences in the third 

referenced nucleic acid peak at ~1031 cm-1, however this peak is situated in a region 

of noise and therefore it is not possible to make definitive observation for this peak 

(Fig. 6.8b).   

 

Figure 6.8c displays the un-derivatised, equivalent mean spectra (vector 

normalised). Throughout the entire region of 1200-900 cm-1 there is a considerable 

decrease in absorption in the KF-treated cell spectra. The predominant peaks around 

~1080 cm-1 and ~968 cm-1 (markers 3, 5 in Fig. 6.8b) also highlight differences in 

absorbance. Without making assumptions, it may be possible that KF drug activity 

Figure 6.7 │ Example of over-fitting: too many PCs using 2nd derivative data (99% VE) by 
LDA score plot (a) and the loadings for DF1 and DF2 (b, c)
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with DNA, is detectable, possibly causing DNA damage at this time point. As 5FU 

is cell cycle specific, it may be that the majority of cells are yet to progress to the 

next phase at this time point. Whatever the reason for the difference, it does seem 

apparent that the KF analogues are acting in a different mode, relative to 5FU.  

 

 

 

 

 

 

 

 Figure 6.8 │ (a) Mean 2nd derivatives, stacked for each group (CTL, 5FU KF1 and KF13-
treated cell spectra). (b) The same mean derivatives, overlaid (c) The non-derivative, 
normalised equivalents. 
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6.3.3 │ FPA-FTIR-imaging analysis after 24 hours exposure to 

compounds  

FTIR hyperspectral images were acquired using same samples as for SR-FTIR. As 

another method of analysing drug-treated cell spectra, these images included data of 

multiple cells, providing thousands of spectra to manipulate. The aim was to 

determine of the same trends as seen in the single cell data could be reproduced 

using LDA, and also to ascertain if clear biomarkers could be determined by using 

mean spectra and PCA.  

  

Infrared images from the same samples were taken in triplicate per group (CTL, 

5FU or KF1) from areas of similar confluence. There were, however, substrate 

regions with spaces where the cells had not grown (Fig. 6.8a). It is known that cells 

secrete chemicals into the surrounding area for a number of purposes. Rather than 

quality testing these ‘vacant’ areas, removing them from spectral analysis, an 

alternative approach was taken.  

 

The individual spectral images were corrected using the RMieS-EMSC algorithm. 

Subsequently, one image each for CTL, 5FU and KF1 were stitched as one mosaic, 

to analyse the images as a whole. K-means clustering was performed to obtain 

clusters that described all groups simultaneously (Fig 6.8b). The spectra were not 

normalised and therefore K-means clustering classed the spectra into groups 

predominantly by sample thickness. This can be seen in Figure 6.8c where the class 

colours match thin (class 2; orange), medium (class 1; grey) and thick (class 3; 

white) areas of the sample.  
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For robustness, the process was repeated a further two times in different areas of 

each slide. Figure 6.9 displays total intensity and corresponding k-means clustering 

for the replicate groups (a), (b) and (c).  

 

 

Figure 6.8 │ (a) optical images of the sample regions (b) IR hyperspectral images were 
acquired for each sample type and stitched together. Total intensity infrared images where 
intensity ranges from blue (minima) to red (maxima). (c) The resultant k-means clustering of 
the three images, split into class 1 (grey), class 2 (orange) and class 3 (white).  
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The resulting mean spectra representing each replicate and for each group (CTL, 

5FU and KF1) can be seen in Figure 6.10. Cancer cells have less contact inhibition 

than non-cancer cells and are more likely to grow on top of one another [29]. This is 

possibly why there are thickness differences on each slide. Alternatively, it may be 

a case of random attachment to the substrate when the cells are first introduced into 

the substrate-containing well. Class 3 spectra highlight the thickest sample areas 

displaying the highest absorbencies in the spectra.  

 

Class 1 was most abundant (~8,000 spectra) and class 2 the least (~200 spectra). 

The class 2 spectra displayed characteristic fringing patterns and represented the 

thinnest sample areas of the slide. It was interesting to note that class 2 areas 

appeared vacant in the optical images, yet signals rich in protein, nucleic acid, lipid 

and carbohydrate are present. These spectral features may be evidence of cellular 

secretions.  

 

Figure 6.9 │ Stitched tiles of total intensity for replicates a, b and c (left) and the corresponding 
k-means clustering analysis (right). 
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The three classes of spectra were analysed separately by PC-LDA using 15 PCs 

(60% of variance explained). The LDA results in general (Fig 6.11) echo the 

general trend seen for the initial SR-FTIR dataset (Fig 6.7a) as cells treated with 

5FU seem to project more on the DF2 axis, whereas the KF drugs appear further 

along the DF1 axis, respective to the control cells.  

Figure 6.10 │ Mean spectra are represented for CTL, KF1 and 5FU for each class. (a), (b) and 
(c) are replicates equivalent to a,b and c in Fig. 6.9.  Class 1 represent the grey shading in the 
K means cluster images, and are spectra of medium thickness. Class 2 represent the orange-
shaded areas of the cluster images, with spectra of very low absorbencies where no cells 
appeared to be present. Class 3 represent the white-shaded cluster image areas and highlight 
regions of greater absorbencies, particularly in the fingerprint region. 
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It is clear, however, that even though the mean spectra per replicate appear similar 

by class, the discriminant analysis of replicates in different areas of the sample 

illustrate that the trend is not completely representative of the entire cell population 

and there are fluctuations. This may be due to differences in cell chemistry as a 

result of cell cycle differences or cell density. 

 

Figure 6.11 │ LDA scores of the spectral groups shown in Figure 6.10, using 15 PCs. Typically 
15 PCs accounted for ~60% of variance. (a), (b) and (c) are replicates equivalent to a,b and c in 
Fig. 6.9 and in Fig. 6.10. 
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6.3.4 │ Single cell SR-FTIR analysis after 72 hours exposure to 

KF compounds 

The clustering patterns from PC-LDA in the 24 hour datasets suggested that the 

Caki-2 cells may have been more sensitive to KF13 than KF1. This was most 

apparent in Figure 6.6 (III a) whereby KF13 cluster points were the furthest 

removed from the CTL data points on the DF1 axis.  

 

As the calculated IC50 values were based on a three-day cytotoxicity assay it was 

thought necessary to see any differences in cell response at this same time point i.e. 

after 72 hours of drug exposure. At this time point, we could be sure that at least 

half of the cellular population should have been inhibited by the agent concentration 

and possibly larger spectral differences. Due to the washing steps involved before 

formalin fixation, dead cells and debris that would have lifted off the surface of the 

substrate would have been removed. In general, only viable cells that either did not 

receive a dose of drug or chemically differentiated cells that may show resistance 

would have remained.   

 

Figure 6.12a displays the PC-LDA score plot of the total dataset (CTL, KF1 and 

KF13), compiled using 4 PCs and non-derivative spectra.  Relative to KF1, KF13 

data points again appeared to be more differentiated from the control. There was 

also a larger spread of data points for KF13. This could also be observed in the 

equivalent group mean spectra. KF13 appears to have greater variance in the protein 

amide I and II peaks (Fig 6.12b).   
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Figure 6.12│ LDA score plot of the total dataset for drug exposure over 3 days (a). Mean spectra 
± standard deviation for each group. KF13 has maximum variance in the amide regions of the 
fingerprint (c). LDA score plot (d) and DF1 loading (e) for KF13 spectra against CTL spectra 
only. (f) displays viable cell proliferation counts acquired over a period of 6 days.  
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The KF13 dataset was analysed singularly against the control spectra (Fig 6.12c) in 

the same manner as the 24 hour equivalent set (Fig. 6.3). It appeared that the drug-

treated cell spectra were again potentially distinguishable from the non-drug treated 

control as there is some separation in PC1. As well as changes in the amide I band, 

differences in the nucleic acid regions below 1200 cm-1 were anti-correlated with 

the mid-fingerprint range (1200-1500 cm-1), rich in lipid and carbohydrate signals 

(Fig 6.12d).  

 

There are many possible reasons as to why the drug-treated cell spectra are 

distinguishable against the control spectra due to a multitude of processes 

occurring:-  

 

 The cells may be sensitive to the drugs and the cells are cells are being 

damaged  

 The cells are responding to the drugs and are actively trying to repair and 

remove the foreign molecules 

 Upon exposure to the KF agents, the cells have evolved and developed 

resistance to and that is why their infrared signature is separable to the 

sensitive control cell population.  

 

A 6 day proliferation assay was performed in order to try and determine the 

eventuality of the cellular response (Fig 6.12e). In all cases, the cells treated with 

the KF series seemed to recover in viable cell number after 72 hours. In contrast, 

the viable cell count for 5FU treated cells remained more or less constant and 

relatively low, eliciting a profile indicative of a cytostatic drug effect.  

  

6.3.5 │ Comparison between 3/6 days after initial drug exposure 

The results of the proliferation assay in 6.3.4 prompted a final investigation into the 

cellular signatures after several days of drug exposure. In particular, it was 

questioned if the KF-treated cell population at ‘day 6’ were now indistinguishable 

to the control cells, as they were under proliferative recovery. 

 



 

 

 

180

The single cell analysis in previous sub-chapters had highlighted issues affecting 

interpretation. There was a high level of data complexity, due to parallel processes 

in the cell cycle. The issue with choosing the number of PCs for LDA was also 

subjective. Upon consideration of the issues associated with single cell analysis it is 

perhaps more advantageous to acquire single-point spectra of cell monolayers and 

use PCA alone to ascertain a general trend. The single point technique has the 

advantage that a large aperture may be used to capture the average signal of several 

cells in one area of the substrate in a single acquisition. This approach also reduces 

the impact of cell cycle differences in chemistry. 

 

 

A new set of samples and a second proliferation assay were prepared for the final 

experiment. Figure 6.13 displays the PCA plot of the non-derivatised spectra. KF13 

data points were distinguishable against the control only at the 72 hour time point 

(Fig. 6.13a). There was no distinction of theses two groups after 6 days of drug 

exposure (Fig 6.13b). Figure 6.13c displays the same KF13 data as figure (b) but 

with added 5FU data as an additional validation of this result. 5FU treated cells 

were very different from the control cells in terms of cell viability from days 3-6 in 

the previous proliferation assay.  

Figure 6.13│PCA of single-point monolayer spectra of  (a)  KF13 versus CTL after 3 days (b) 
KF13 versus CTL after 6 days (c) 5FU and KF13 versus CTL after 6 days of exposure 
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The second proliferation assay displayed the same pattern of proliferation (Fig. 

6.14). The difference between 5FU-treated cells and the CTL/KF13 cells were again 

apparent. A proportion of 5FU-exposed cells remained viable but no longer 

proliferated, whereas the KF-exposed cells recover from proliferation inhibition 

after three days. This result could support why the chemistry of 5FU-cell spectra 

separate from the chemistry of the KF-treated cell spectra in the PCA score plot 

(Fig. 6.13c). 

 

Visual differences were also noted in the in-vitro photomicrographs taken for CTL, 

5FU and KF13 (and KF1 in addition) in Figure 6.15 at the 6th day before cell 

counting protocol was implemented. There was a large display of un-healthy 

apoptotic cells in the 5FU image, with instances of cell blebbing. In contrast, there 

were smaller instances of blebbing however in general KF treated cells appeared 

similar in morphology to the control cells, suggesting a similar viability. 

Figure 6.14│ The repeat of the cell viability proliferation assay for CTL, KF13 and 5FU 
treated cells. 
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6.4 │Conclusions and Future Prospects 

The analysis has shown heterogeneity in the cell populations treated with different 

chemotherapeutic agents. This was observed in the spread and overlap of data point 

for the single cell experiments and in the hyperspectral FTIR images. Single-point 

spectra of large cell monolayer areas, in combination with PCA was shown to be 

the best current method for detecting overall trends in the different cellular 

responses.  

 

One reason may be simply due to sampling numbers:  ten to twenty spectra were 

taken for the single point data, encompassing numerous cells simultaneously. In 

comparison, the imaging investigation was performed with only 3 images per drug 

variable, due to the nature and size of the files. However, it could be said that the 

imaging technique provided the advantage of spatial resolution, where each 

Figure 6.15│ In-vitro photo-micrographs of the Caki-2 cells after 6 days of drug exposure: (a) 
CTL, (b) 5FU (c) KF1 (d) KF13   
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spectrum related to a pixel are of 5.5 m2. This meant that individual cells would 

have been probed every few pixels and cell cycle differences may have contributed 

to the differences in trends. It may also be that certain areas of the sample were 

denser than others. It has been shown that chemical differences in the infrared 

spectra of cells may differ depending on whether cells are in the exponential 

(proliferating) or plateau (non-proliferating) phase of growth [31].  

 

As cells communicate with one another receiving chemical signals from nearby 

cells [1] (Ch. 1.1.2), this may also account for the different relationship patterns in 

the areas surrounding the cells (low-absorbance spectra, k means class 2, orange 

cluster areas), which most likely included traces of cellular chemical secretions. The 

mean spectra from these regions displayed relatively high intensities in the sub-900 

cm-1 spectral region. (The area 1200-800 cm-1 included many nucleic acid signals 

[30]). In selected areas of the sample, these class 2 spectra were sometimes 

differentiated in terms of drug variable (CTL, 5FU or KF1) during discriminant 

analysis.  

 

It is also possible that the spectral signatures in these sparse regions arose from cell 

secretions or signals due to stress. Normally in the human body, dead cells can 

attract phagocytes that engulf the dead cells before their cell membrane integrity is 

lost.  This prevents the release of toxins into the extracellular matrix which would 

otherwise affect nearby cells [33]. In an in-vitro environment, the cell line cannot 

exhibit such a mechanism and it is feasible that there may be traces of cell debris or 

toxins.   

 

The KF analogues appeared to recover in viable proliferative cell count, as seen by 

the proliferation assays after 3 days and the PCA plot after 6 days. One possible 

explanation is that the drugs were readily effluxed out of the cells, i.e. the drug 

effect was no longer observed as the drug was no longer present; P-gp and other 

membrane transporters such as MRP1, and ABCG2 recognize a wide spectrum of 

compounds, however, they share a common feature in that their transport substrate 

are typically hydrophobic, especially the case for P-gp and ABCG2. Therefore 

many drugs that exhibit similar hydrophobic properties could be substrates for these 
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drug efflux pumps and may readily cross lipid bilayer by passive diffusion [34]. For 

P-gp substrates, the now widely accepted 'hydrophobic vacuum cleaner' model, 

accounts for the lipophilic nature of P-gp substrates [34-36]. It is suggested that 

drugs that have entered into the phospholipid bilayer are pumped out of the 

membrane by the P-gp pump and are expelled into the extracellular aqueous phase.  

 

In terms of the KF-series for renal cell carcinoma, this drug efflux proposal could 

be analysed further by means of blocking the efflux ability of the cells in a similar 

fashion as the use of Verapamil to sort the side population cells, enriched for stem-

like cells (Ch. 5). 

 

Further investigation for the methodology points towards a simplification step 

whereby perhaps differences in cell cycle chemistry could be separated from the 

different effects of particular anti-cancer drugs.  
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Chapter 7 │Discriminating Chemical Responses by 

Cell Cycle Phase 
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7.1 │ Introduction and Aims 

The previous chapter outlined the difficulties in trying to separate cellular response 

from different agents. PCA score plots of the cell spectra, displayed widely 

dispersive intra-group clustering, as observed in Chapter 6 (Fig. 6.6) and by K. 

Flower et al. [1]. It is suggested that there may be small sub-clusters where spectra 

are grouping in PC1, predominantly because of cell cycle signatures, rather than 

slight chemical changes that may occur by cellular drug response.  A collection of 

SR-FTIR spectra from a ‘typical’ population will yield a mixture of cell spectra 

displaying different quantities of biomolecular components, depending on the cell 

phase at the time of chemical fixation.  

 

It is possible to sort and collect cells in different phases of the cell cycle through the 

use of a fluorescence-activated cell sorting (FACS) which analyses the DNA 

content of the cell, by use of a fluorescent dye that quantitatively binds to it 

(Chapter 2) [2]. 

 

Cells in the resting phase are G0/ G1, the pre-DNA synthesis phase. The cells in the 

S phase are actively undergoing DNA-synthesis and contain increasing quantities of 

DNA [3]. In clinical terms, patient tumours observed to have a high S phase fraction 

are typically said to be at high risk from tumour recurrence [4-5]. The post DNA-

synthesis phase is referred to as G2/M where cells have twice the amount of DNA 

as the G0/G1 phase as they are entering into mitosis. 

 

Propidium iodide (PI) stoichiometrically binds to double-stranded DNA by 

intercalation. As a ligand, the die fits between the base pairs of DNA, causing 

inevitable conformational changes in the DNA [2]. 

 

Using this dye for cellular spectral analysis and PCA discrimination will lead to an 

obvious cluster separation of the cells from different phases, as presumably the 

higher the PI concentration the greater the extent of DNA conformational change 

(Fig 7.4b).  
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Due to the stoichiometric nature of the staining reaction mechanism, however, it 

would still be possible to evaluate a single cell line treated with different agents 

with this approach, provided that the cell spectra were analysed from one phase at a 

time. This would be viable as the PI concentration per cell cycle phase would 

generally be a constant in one cell line and therefore can be omitted as a factor of 

multivariate discrimination.  

 

The aim was to determine if cellular responses could be detected without having to 

consider cell cycle differences. It was predicted that interpretation and possible 

biomarker generation from the multivariate analysis loading plots would also be 

clearer and perhaps more accurate.  

 

7.2 │Experimental 

7.2.1 │SRB cytotoxicity assay 

The cytotoxicity assay followed the same protocol as described in Chapter 2.4.4 to 

obtain IC50 values for the A-498 cell line. 

 

7.2.2 │FACS  

The experimental procedures in Chapter 2.4.7 describe the experimental setup to 

enable cells to be stained with propidium iodide and sorted using flow cytometry.  

 

7.2.3 │Spectral sample preparation 

Following cell sorting cells were spun and re-suspended in 150 L of ddH2O. The 

aliquots were deposited with a cell cytospinner (Ch. 2.4.2.2) onto CaF2 substrates at 

800 g for 5 minutes  
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7.2.4 │ Data acquisition 

SR-FTIR transmission spectra were acquired on the SMIS beamline according to 

the protocol in Ch. 2.4.3.2. Spectra were recorded at 4 cm-1 resolution with 256 co-

scans.  

 

7.2.5 │ Data pre-processing and analysis 

The day 1 control dataset contained 73 spectra in total and the day 3 dataset 

(control, 5FU treated or KF1 treated) contained 113 spectra.  For the day 3 dataset a 

total of 40 spectra were recorded for each cell type. The raw spectra were corrected 

with a Matrigel reference spectrum and 150 iterations of the RMieS-EMSC 

algorithm.  The corrected spectra were vector normalised and mean centred prior to 

PCA, using the spectral range 1110-1825 cm-1.  

 

7.3 │Results and Discussion  

7.3.1 │Cell cytotoxicity  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 │ Dose response curves to determine IC50 values for the A-498 cell line from the SRB 
assay data (repeated in triplicate). Graphs were created in Graphpad Prism using mean values ± 
standard error.  
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Both cell lines used throughout the course of the drug-response research were 

closely matched, defined as primary RCC with wildtype p53 expression [6]. As in 

Chapter 6 for the Caki-2 cell line, the IC50 values had to be obtained for the A-498 

cell line. These were found to be: KF1 [2.61 M]; KF13 [2.23 M]; KF5 [3.26M]; 

5FU [2.91 M]. The IC50 values obtained from the replicate SRB assays revealed 

that the cell line A-498 was more sensitive to the gold-based agents than the Caki-2 

cell line (Fig. 7.1), whereas 5FU did not vary distinctively. This may be due to P-gp 

expression differences as P-gp does not export small hydrophilic drugs such as 

Cisplatin, 5-Fluorouracil [7]. The A-498 cell line was used in this instance to 

possibly detect a greater response within the cells, with respect to the non-treated 

control cells. 

 

7.3.2 │ FACS cell cycle sorting  

Cells were collected after 24 and 72 hours of exposure to the agents and stained 

with propidium iodide for FACS sorting. There appeared no apparent discrepancies 

between control cells and KF1 treated cells during both time periods. The only 

unique histogram profile was obtained for cells 72 hours upon treatment with 5FU, 

highlighting cell cycle arrest in the S phase as expected (Fig. 7.2).   

 

As described in further detail in Chapter 1, 5-fluorouracil belongs to the anti-

metabolite category of chemotherapy agents.  Anti-metabolites are very similar to 

normal substances within the cell affecting cells at very specific phases in the cycle.  

When the cells incorporate these substances into the cellular metabolism, they are 

unable to divide [8].   

 

Interestingly in Figure 7.2, the effect of 5FU at the IC50 concentration was not 

observed until 72 hours of exposure to the drug. This time period coincides with the 

length of time the IC50 value was determined by the 72 hours cytotoxicity SRB 

assay. It may simply be that a higher proportion of cells are affected by the 
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concentration of 5FU at the 3 day time point and this is reflected by a notable 

change in the cell numbers at each phase.  

 

5FU is said to inhibit cell cycle progression at S phase [8].; however we do not see a 

change in the FACS cell cycle profile until 72 hours after drug addition. The result 

may also suggest that 5FU did not have an immediate notable effect on the cell 

population 24 hours after drug addition. The cells were to establish onto the 

substrates in the tissue culture wells for 24 hours prior to drug addition, making a 

total of 48 hours for cells to complete their cycle. Although 48 hours seems a 

substantial time period for cell cycle competition, the cells may have remained in 

G0/1 phase longer when cultured onto a MirrIR substrate rather than the more 

preferable conditions of a tissue culture plastic alone. At the time point 72 hours 

after drug addition, the cells had been cultured for a total of 5 days in the substrate 

environment, a suitable duration for cells to settle onto the substrate and attempt to 

complete the cell cycle.  

 

 

 

 

 

Figure 7.2 │ FACS histogram plots of G1 (green), S (gold) and G2/M (blue) cell counts. The A-
498 cells were exposed to agents KF1, KF13 and 5FU at the IC50 for a period of 24 and 72 
hours.   
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7.3.3 │ Spectral and sample quality  

The control spectra for the 24 hour dataset were analysed in terms of G(1), S and 

G2/M phase. Figure 7.3 displays the mean spectra directly after RMieS-EMSC 

correction (without vector normalisation).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall absorbance appeared to be greater in G2/M cells than in the other cell cycle 

spectra. This result favourably compared with the research of Holman et al. [9] (Fig. 

7.4) who postulated this may due to either more material in the cell, or thickness 

differences in M phase. In the second case there could be a greater path length for 

the IR beam to traverse. The vs(CH3).peak at ~1392 cm-1 is noticeably larger in the 

G2/M phase, an observation again described by Holman et al. [9].   

 

The positive correlations suggest that the PI dye is not seriously affecting the 

associated chemistry of the cell cycle within the spectral bands of molecules other 

than those associated with DNA.  

 

 

Figure 7.3 │ Mean RMies-EMSC corrected spectra for non-drug treated control cells after 24 
hours of cell culture (not normalised). 
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The spectra (Fig. 7.5) were typically of poorer quality in the lower wavenumber 

region (1200-1000 cm-1), with low signal and increased noise, relative to other 

drug-treated (Chapter 6) or cytospun spectra (Chapter 5). 

Figure 7.4 │A figure taken from the publication of Holman et al. [9] comparing the mean 
spectra of cell cycle phase in normal human foetal lung fibroblast cells IMR-90. 
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After discussion with the SMIS beamline team at Soleil, the large absorbance below 

1100 cm-1 probably arises from a misalignment of the condenser. It has been 

observed that the condenser not remaining aligned when the lower microscope 

illumination was left on. It is probable that this is due to the warming of the mirror 

and a change in the mirror curvature or alignment due to dilatation.  

 

The fingerprint region was therefore decreased to 1110-1825 cm-1, omitting the 

poor signal to noise areas that contained nucleic that may have otherwise been 

highly informative.     

 

Figure 7.6a displays of RMieS-EMSC corrected, vector normalised mean spectra 

per cycle phase displaying their standard deviation. The amide I and II regions 

displayed notable variance, as well as the region 1200-1400 cm-1 spectral region in 

the G1 phase spectra. It may be that in the cells in G1 phase are more heterogeneous 

as DNA replication is occurring, perhaps faster in some cells than others, hence the 

larger variability in the nucleic acid region due to PI dye concentration.  

 

The PCA score plot for the control dataset is shown in Figure 7.6b. G1 phase 

spectra are anti-correlated against S and G2/M phase spectra in PC1. Distinction 

Figure 7.5 │ RMieS corrected dataset for 24 hour control. The spectral range used for analysis 
had to be reduced to 1110-1825 cm-1. 
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can also be made in PC2 where G2/M phase spectra anti-correlate with G1 and S 

data.  

 

The cell spectra in different cell cycle phases could not be compared to one another 

due to the influence of PI. Increased DNA content in the later phases of the cycle, 

just before mitosis, means that the concentration of the PI dye will be higher in 

these cells, and therefore the extent of DNA conformational change.  
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Figure 7.6 │ (a) mean (RMieS-EMSC corrected; vector normalised) fingerprint spectra for G1 
(green), S (gold) and G2/M (blue) control cells  describing the difference in standard deviation 
(not to scale). Variance in the spectra can be mainly found at the amide I and II absorbance 
bands (b) PCA of the dataset and subsequent loading plots (c, d for PC1, PC2). The equivalent 
2nd derivative score plot (e) and PC2 loading (f). 
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Figure 7.7 displays optical images of the FACS-sorted control cells, cytospun onto 

calcium fluoride substrates. The S and G2/M cells appear darker, due to the extent 

of PI intercalation within the cell.  

 

Interestingly, the cells in G1 phase appear larger in diameter than the other cells. 

During the cell cycle process, typically the cells become larger as these progresses 

through each stage. G2 stage cells should technically be the largest as cells continue 

to grow through the cell cycle, prior to mitosis [3].  
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Figure 7.7 │Optical images of a selection of control cells prepared for spectroscopy 
measurements, highlighting differences between G(1), S, and G2/M cells. 
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The diameters of 50 cells were measured using a ruler tool in the Omnic software 

for each phase. The group means were 24 m, 22 m and 19m for cells in G(1), S 

and G2/M phase respectively and were found to be statistically different (P<0.001) 

using a one-way analysis of variance (ANOVA) test in Graphpad Prism (Fig. 7.8).    

 

 

 

 

 

 

 

 

 

 

It is possible that the cells collected in G2/M phase, which had undergone spectral 

acquisition, included a cell population richer in M phase cells than G2 cells. In M 

phase cell division would have occurred. The daughter cells would be smaller in 

size than cells in the rest of the cell cycle prior to mitosis [3].  

 

It would be impossible, however, to make a definitive assumption about the natural 

size of the cells prior to processing for spectroscopy measurements.  The cells were 

ethanol fixed prior to FACS sorting. The ethanol fixation may have an effect 

morphological distortion, such that dehydration may shrink the cells [10]. The 

difference in PI concentration between cell phases, however, is probably not a 

factor, as the dye is applied after ethanol fixation.   

 

Research has shown that, for a cell line of different origin, G2/M cells were said to 

be more rigid than G1 cells [11]. This may be another plausible explanation as to 

why the G1 cells appeared larger after cyto-spinning. It was possible that the G2/M 

cells, displaying more rigid properties than the G1 or S cells, remained relatively 

Figure 7.8 │ Mean diameter of cytospun cells for each cell cycle phase ± standard deviation 
(S.D). 
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spherical when the centrifugal force was applied whereas the G1/S cells flattened 

slightly more on impact. 

 

It was important to utilise the RMieS correction algorithm on this dataset, 

particularly because of the size difference. The cells from different phases may have 

all appeared similar in morphological shape; however, the difference in size would 

have an effect on the Mie scattering profile. Cells may have been discriminated 

against because of these different profiles, of which can be observed in the mean 

raw spectra (with standard deviation) in Figure 7.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3.3 │Cellular response after 24 hours of drug exposure 

In Chapter 6, chemometric distinction between KF1 and 5FU treated Caki-2 cells 

after 24 hours was found. This distinction was only achieved, however, with the use 

of spectral derivatives and discriminant function analysis.   

Figure 7.9 │The mean cell phase spectra for G1 (green), S (gold) and G2/M (blue), acquired 
from the non-drug treated control at the 24 hour time point.
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As previously discussed, it was not a viable option to compare drug-treated cell 

spectra from different cell phases due to the difference in DNA conformation from 

the propidium iodide concentrations.  

 

As previously discussed, during FACS analysis whereby the cells were sorted in 

preparation for the SR-FTIR experiments, the cell count profiles showed no 

apparent difference in cell accumulation in each phase after 24 hours of agent 

addition, in all group cases (Fig 7.2)  

 

Spectral data collection focused on the 72 hour time point samples, however, G1 

phase cell spectra for the PI stained 24 hour drug exposure samples were also 

collected. PCA was performed on the stained, G1 phase SR-FTIR spectra, enabling 

a comparison of cells treated with different agents in same phase, irrespective of PI 

concentration.   

 

Cluster separation between cells treated with different agents was achieved (Fig. 

7.10). Due to the single-phase analysis where PI concentration and cell cycle 

chemistry remained a constant, the complexity of the dataset was reduced, such that 

the use of spectral derivatives and supervised LDA were not necessary to 

discriminate spectra.  The SR-FTIR and chemometric approach found differences in 

cell chemistry after 24 hours of drug exposure, a result that was not detectable by 

corresponding FACS analysis. This demonstrates the sensitivity of the infrared 

technique. 

 

Figure 7.10 │ PCA of cell spectra in G1 phase after 24 hours of drug exposure (a) with PC1 and 
PC3 loadings (b, c)  
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Drug treated cell spectra could be discriminated from the control group in PC1. The 

loading plot in PC1 predominantly highlights protein differences. KF1 also 

appeared to discriminate from the CTL/5FU groups in PC2. The loadings in PC3 

revealed a notable peak at ~1700 cm-1. This peak resides near the protein region of 

the spectral fingerprint, although according to Dovbeshko et al. [12], it may be 

associated with nucleic acid damage and repair. Stretching C=O vibrations that are 

H-bonded (in guanine, thymine) may be connected with destruction of old H-bonds 

and creation of the new ones. A full assignment [13] of loadings peaks for PC1 and 

PC3 can be found in Table 7.1, 7.2 (Ch. 9, Appendix).  

  

It may be postulated that the KF1 drug is interacting with the cellular DNA at this 

time point. Similarly when Caki-2 cells were treated with KF1 and KF13, they 

appeared to have a greater initial change in cell chemistry than the 5FU after 24 

hours (Ch. 6). In some cases the loading plots from chapter 6 displayed similar 

peaks at ~1700 cm-1 however it was difficult to deduce cell cycle contributions from 

drug effect.  

 

Proliferating cells are generally more susceptible than resting cells to toxic and 

mutagenic effects of DNA-damaging agents as DNA replication and chromosome 

segregation processes are easily disrupted by DNA damage [14]. To prevent cells 

with damaged DNA to continue to S-phase, signal transducers activate p53 and de-

activate cyclin-dependent kinases to inhibit cell cycle progression. Cell cycle arrest 

can occur, which enables extra time for repair enzymes to work on the damaged 

DNA before cell cycle continuation [14-15].  

 

As described (Ch. 1.2.2) activation and deactivation of signal transduction pathways 

are initiated by phosphorylation. In PC3, which separates the CTL and 5FU clusters 

from KF1, there is a notable contribution to the loading around the lower spectral 

fingerprint region, most notably ~1240 cm-1 which is primarily associated with 

phosphate as(PO2) stretching from phosphodiester groups of cellular nucleic acids 

[12].  
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7.3.4 │Cellular response after 72 hours of drug exposure 

The analysis of cells after 24 hours of exposure will sample cells that are most 

likely within the process of cellular damage and repair. Here, cell spectra were 

acquired for cells treated with KF1 and 5FU (and non-treated control cells) after 72 

hours after initial exposure to the drugs. At 72 hours, however, cells likely to be 

affected by the chemotherapeutic agents would no longer be viable and would not 

have been part of the cell population. Dead cells and debris would have been 

removed during the sample processing. During the flow-cytometry forward angle 

light-scatter gating would have remove small debris. Dead cells prior would also 

have been gated out due to a reduced DNA fluorescence signal because of DNA 

breakdown in dead cells prior to chemical fixation [16-17]. Therefore the cell 

populations studied in the 72 hour dataset included largely viable cells unaffected 

by the initial drug dose. Cells in the process of repair or damage would also be 

present however, though perhaps at a reduced frequency than the 24 hour dataset.   

 

The dataset, including all G1, S and G2/M phases was analysed by PCA as a whole 

dataset (Fig. 7.11). The resulting spread of data points appeared similar to previous 

experiments in chapter 6, where cell cycle chemistry appeared to inhibit or mask the 

effects of the different drugs. Similar plots were also seen by Flower et al. in drug-

treated ovarian cancer cell lines [1]. 

 

However the spectra corresponding to the individual stage were known and were 

highlighted accordingly in the sub-plots below the main figure. Without the use of 

derivatives, or further discriminant analysis, it was clear that most of the variation 

in the main dataset cluster stemmed from the differences in cell chemistry in S 

phase.  
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Figure 7.11│ PCA of total dataset (top) and the respective spectra from each phase that made up 
the total dataset are shown below where it is apparent that the greatest variance between the 
drug types occurs in S phase.   
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Analysis of the complete dataset loadings would not be viable due to the variable 

extent of DNA conformational change from PI concentration from phase to phase. 

To validate this result, PCA was repeated using S phase group spectra alone. The 

same relationship was observed (Fig. 7.12a), suggesting that the cell chemistry in 

KF1-treated cell spectra is anti-correlated with the 5FU-treated cell spectra. This is 

again in agreement with the FACS analysis which illustrated a significant change in 

the cell population profile in S phase after 72 hours of drug exposure. The use of 

5FU validates the FACS methodology and therefore it can be said that KF1 does not 

appear to cause significant cell cycle arrest in the A-498 RCC cell line.  

 

 

The peak at 1700 cm-1 found in the PC loading when G1 phase (Fig. 7.10b) was 

compared is not present in the S phase PC2 loading plot above (Fig. 7.12b).   

 

A compete assignment [13] is given in Table 7.3, (Ch.9, Appendix). Notable 

loading peaks concern protein bands, and the s(PO2) symmetric phosphodiester 

stretching band of RNA at ~1120 cm-1. The protocol for PI staining requires RNAse 

treatment [6] so that both RNA and DNA are not stained, thus evidence is given of 

a chemical difference detected that is wholly unaffected by PI staining, therefore 

validating the use of intra-phase analysis.  

 

As described previously (Ch. 1), 5FU is an analogue of uracil with a fluorine atom 

at the C-5 position in place of hydrogen. Upon cellular entry it is converted to 

Figure 7.12│ PCA using S phase data only (a) and the PC2 loading plot that highlights the 
discriminatory chemical differences between the two different drug-treated cell populations
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several active metabolites: fluorodeoxyuridine monophosphate (FdUMP), 

fluorodeoxyuridine triphosphate (FdUTP) and fluorouridine triphosphate (FUTP). 

These active metabolites disrupt RNA synthesis and the action of thymidine 

synthase (TS) [15].   

 

There is also an intra-S-phase checkpoint that can block replication. It is activated 

by damage encountered during the S phase, or previously unrepaired damage that 

has escaped the G1/S checkpoint.  The damage sensors for the intra-S checkpoint 

include a large set of checkpoint and repair proteins [15].  

 

As a final exercise, PC-LDA was performed (Fig 7.13) using 5 PCs and second 

derivative spectra, a combination used in Chapter 6. In this case, however, there are 

9 different groups (G1, S and G2/M for CTL, KF1 and 5FU) and the size of the 

dataset was too limited for any results to provide 100% confidence at this stage.   

 

It does however enhance the separation of cell-treatment groups in S phase. To a 

certain extent, it could be argued that there are cellular chemical differences in 

G2/M phase also. The G2/M checkpoint prevents cells from undergoing mitosis in 

the presence of DNA damage. It could be postulated, as the cells selected for 

spectroscopy are viable ones at this 72 hour stage, there may be an indication of 

repair mechanisms in motion.  
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Figure 7.13│ LDA of the total 2nd derivative dataset using 5PCs. The respective spectra from 
each phase that made up the total dataset are shown below where it is apparent that the greatest 
variance between the drug types occurs in S phase and possibly some difference in G2/M phase. 
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7.4 │Conclusions and Future Prospects 

The use of FACS sorting the cells enabled differences due to drug effect to be 

analysed alone, which simplified interpretation of the multivariate analysis results.  

In chapter 6 it appeared that generally, the KF compound series caused a greater 

change cellular chemistry earlier.  

 

This chemical change may pertain to the fact that the KF drugs are causing DNA 

cross-linking at this stage, as suggested. It is known that 5FU acts in a very different 

mode and disrupts progression in the S phase of the cell cycle.   

 

This evidence may help determine the timing of future experiments, depending 

upon the question to be asked. Is it an initial response that is to be observed, or is it 

the greatest extent of the response and chemical change, which will be determined 

by the length of the corresponding inhibitory concentration assay, 50% of cells will 

not be inhibited. It is these viable cells that are analysed (Ch. 7.3.4), as well as 

perhaps partially-viable cells.   

 

As seen in chapter 6 with the Caki-2 cell line, a cellular response to the anticancer 

compounds could be detected after 24 hours of exposure, unlike the other 

techniques used. This highlights an advantage of the technique, and shows promise 

that an indication of drug efficacy may be detectable in a short time frame, in the 

context of high-throughput screening of a multidrug panel. Result at this time point 

has also raised the question as to what earliest time point an initial response may be 

detected by FTIR spectroscopy. An ideal way to monitor this would be to use a live 

cell experiment. Flow cytometry is a progressive field, particularly with the use of 

synchrotron radiation sources for single cell experiments [18-20]. Water 

contributions, however, would dominate the signal unless a correction could 

account for the contributions, or a flow cytometry cell is well designed to limit the 

effects of water in the spectrum. Alternatively Raman spectroscopy has an 

advantage over infrared for liquid based experiments, however, there is an added 

risk of damaging the sample due to the heat generated, which would affect cell 

viability. Regardless of this, recent research has shown promise [21-23]. 
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Through the use of FACS analysis, sorting single cells by their progression phase in 

the cell cycle, it was possible to analyse differences largely due to drug effect by 

analysing one phase at a time. Where cluster patterns and chemical signatures could 

be interpreted by assessing same-phase spectra, a number of chemical differences 

agreed with the FACS analysis and the known mode of action of 5FU. The results 

including tentative band assignments would warrant further confirmation with 

alternative methods in order to be validated.   

 

The necessary use of propidium iodide staining, however, was not the most ideal 

situation. As chemical fixation was used prior to staining, the staining should not 

have had too much of an effect on the cellular chemistry overall. It did, however, 

affect the detection of changes in nucleic acids; a highly important feature in 

monitoring cellular response to drugs. Cells analysed across different phases would 

most likely involve difference in peaks associated with nucleic acids, due to the 

DNA conformational changes from the intercalation of different concentrations of 

PI dye.  

 

It is still desirable to separate chemistry based on cell cycle differences from 

chemistry changes from cellular drug response. Removal or isolation of cell cycle 

chemistry as a variable makes for more simple and accurate analysis of drug 

response effects. The next logical step in this line of research, therefore, would be to 

establish a method to define spectra to respective cell cycle phase without having to 

stain the cells first, thereby introducing chemical changes in a highly important 

region of spectrum.  

 

To do this a supervised training algorithm would need to be implemented; using a 

technique similar to Boydston-White et al. [24]. Cell spectra could be acquired and 

subsequently stained with 4’,6-diamidino-2-phenylindole (DAPI) which is a 

fluorescent stain that binds strongly to DNA in a stoichiometric reaction. It can be 

used to quantify cellular DNA content by measuring the integrated intensity of the 

dye in the nucleus and is used extensively in fluorescence microscopy and for the 

analysis of both live and fixed cells [25-26]. It is more advantageous to PI which 
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requires RNAse treatment so that both RNA and DNA are not stained. DAPI does 

bind to RNA but is not as strongly fluorescent and the use of RNAse is not required. 

Cell cycle could be deduced by applying the appropriate fluorescence intensity 

thresholds where intensity = G1 < S < G2/M.  

 

In order to locate individual cells before and after spectral acquisition and staining 

the use of an England finder graticule would be advantageous, held underneath a 

reflective slide such as MirrIR. Once a cell was selected for acquisition, the focus 

could be shifted to the graticule and the position co-ordinate recorded along with 

the image.  

 

An example of this is shown (Fig. 7.14) using Omnic software at the Soleil 

synchrotron. Another advantage of this approach would be that cells could be 

grown directly onto the infrared substrate, removing the need for cyto-spinning and 

preserving true cellular morphology (as true as can be for cells grown onto a flat, 

2D surface).  

 

 

 

 

 

 

 

Figure 7.14│ Optical images of the England finder graticule (left) and corresponding region on 
the sample surface (right). The cross-hair marks the co-ordinate of the cell in both images. 
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The cultured cells would then be stained for DNA content and defined in cell cycle 

phase using the fluorescent DAPI dye as illustrated in Figure 7.15. Once a 

supervised training algorithm was in place, cell spectra may be characterised 

without the use of staining in the future, which would be advantageous not only to 

the analysis of cellular response to drugs, but for many other applications.  

 

 

 

 

 

 

 

 

 

Figure 7.15│ Fluorescence microscopy: example of A-498 cells with their nuclei stained with 
DAPI (in mountant) taken with an Olympus microscope equipped with a 20× lens for an 
exposure time of 300 ms.  
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Chapter 8 │Project Conclusions and Future Potential 
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To lay the foundation work in order to investigate the feasibility of FTIR 

spectroscopy as a tool for cellular response to drugs, three levels of progression 

were involved.  

 

8.1│Validation of the RMieS-EMSC algorithm for spectral 

interpretation using cell line characterisation of renal 

carcinoma cell lines 

The novel correction RMieS-EMSC algorithm to correct FTIR spectra of biological 

material is a welcomed improvement in spectral pre-processing. The algorithm has 

been shown to correct simulated spectra with greatly improved performance over 

older algorithms, such as EMSC alone. While using simulated spectra can result in 

a definite evaluation of the algorithm’s performance, it is more difficult to comment 

on the performance with real biological spectra, as the ‘true’ corrected spectrum 

answer cannot easily be known. 

 

If the spectroscopy community is to rely heavily on such an algorithm in order to 

confidently interpret biological spectra, it was important to validate the RMieS-

EMSC corrected spectra with other scientific techniques that did not suffer from 

such optical distortions.  

  

In addition, validation with more clinically familiar -omic techniques was also 

explored in order to perhaps reach a wider audience, such as members of the 

clinical community that are unfamiliar with infrared spectroscopy.  

 

Interpretation from the multivariate analysis of the corrected FTIR spectra 

highlighted key differences in the protein composition of the RCC cell line 2247R, 

relative to the 2245R and 2246R cell line. For validation, label-free LCMS analysis 

of the cell lysates revealed that the 2247R protein chemistry was more anomalous to 

that of the other two cells lines. In particular, alpha-rich sub-units of Histone H2A 

were revealed to be highly expressed in cell line 2247R, which also appeared to be 
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rich in alpha helical protein secondary structure in the FTIR analysis. The over-

expression of Histone H2A was in turn validated by Western blot for confirmation.  

 

8.2│Characterisation of renal carcinoma cell lines and cells 

displaying ‘stem-cell like’ properties  

In the eventual analysis of the changes in cellular chemistry to different drugs, 

spectroscopic and chemometric discrimination would involve tracking discrete 

changes in one cell line, not simply discriminating cell lines of different origin.  

 

The low proportion of cells displaying stem-cell like characteristics as a sub-

population provided yet another model of cell characterisation with increased 

difficulty. A project running parallel to the investigation looking at targeted side 

population cancer therapy meant that these cells were readily available for 

spectroscopic analysis. They were typically small and required the use of an 

infrared source of high brilliance (synchrotron radiation) and use of the RMieS-

EMSC correction algorithm in order to fully characterise.  

 

Not only could the general side population cells be characterised by a different 

spectral infrared signature to the general, non-side population but the two sub-side 

populations were also discriminated. This was an encouraging result and allows 

potential to follow up the parallel, targeted therapy experiment with FTIR and 

chemometric analysis to determine drug-side population response in the future.    

  

8.3│Exploring methods of detecting cellular response to 

chemotherapeutics 

In the model, it was recognised that 5FU is not very efficient in treating RCC in 

clinical practice; it provided a good basis as a model agents as it is an established 

drug with known mode of action, including cell cycle arrest.   
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For the gold-based KF series of novel drugs, it was not known whether they would 

perform. At the end of the initial investigation, however, it was deemed that while 

the KF drugs did have an initial effect, where signs of possible DNA damage and 

repair were observed, subsequent analysis after 3 days showed disappointing 

results. Viability assays showed that proliferation had recovered.   

 

In single point monolayer analysis using PCA, the chemical profiles of the infrared 

spectra of the cells seemed no different to control, suggesting that the cells had not 

developed resistance or perhaps the drugs were simply no longer present due to cell 

efflux, or breakdown.  

 

This also highlights the question as to which day of exposure to drugs should cell 

spectra be analysed? It may be hard to predict response from day 1 as some agents 

may take more time to act, particularly if they cause cell cycle arrest. The results 

have also sparked another question concerning dosage: as it is difficult to translate 

drug dosages in vitro to in vivo, it is better to look at a single dose at the IC50, or 

multiple doses at multiple concentrations?  

 

PCA works well enough for cell monolayers looking at general trends of a 

population of cells and is preferable over supervised chemometric techniques that 

can include levels of subjectivity.  

 

The issue of sample heterogeneity due to cell cycle differences was amplified when 

analysing single cell spectra. Efforts must be made to separate the infrared 

information of drug response from differences simply due to inherent cell cycle 

chemistry if the technique is to be further developed. It was shown in chapter 7 that 

advanced techniques of discrimination such as LDA may not be required if cell 

cycle can be omitted factor of discrimination. 

 

In the context of the experiments (Ch.6 and Ch.7.) the FTIR methodology has been 

successful in indicating a cellular response to the novel gold compounds, which 

suggests that they are certainly active and able to infiltrate into the cells, particularly 

in the first 24 hours. While the overall efficacy of the compounds against RCC is 
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poor, the result is powerful enough to suggest that the compounds may be more 

effective in other types of cancer cell. Using multivariate analysis it was also 

possible to distinguish between the gold compounds from 5FU, which has a distinct 

mode of action that affects cells in the S phase in particular.  

 

In conclusion, use of FTIR spectroscopy appears a feasible technique to monitor 

drug effects in cells. While the full extent of this method is not yet validated and 

there are many unanswered questions to account for, the conclusions gained from 

the spectral analyses were in line with complimentary methods such as the FACS 

and viability assays. Once further development of this approach to early assessment 

of drug efficacy can be achieved, it may attract pharmaceutical interest.  
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Chapter 9 │ Appendix 
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Table 4.1 │Calculating the alpha/beta ratio of protein secondary 

structure  
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Table 4.2 │ MS peptide feature abundance and best peptide 

match 
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Table 4.3 │ MSMS protein identification and secondary structure 

estimation 
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Table 4.4 │ MSMS protein identification and secondary structure 

estimation 
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Table 7.1 │ PC1 Loading plot analysis of G1 phase cell spectra 

after 24 hours of exposure   

 

PC1 separates CTL against KF1, 5FU  
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Table 7.2 │PC3 Loading plot analysis of G1 phase cell spectra 

after 24 hours exposure  

 

PC3 separates KF1 against CTL, 5FU 
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Table 7.3 │PC1 Loading plot analysis of S phase cell spectra 

after 72 hours exposure  

 

PC1 separates KF1 against 5FU 
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