60 research outputs found

    Volatility in coral cover erodes niche structure, but not diversity, in reef fish assemblages

    Get PDF
    The world’s coral reefs are experiencing increasing volatility in coral cover, largely because of anthropogenic environmental change, highlighting the need to understand how such volatility will influence the structure and dynamics of reef assemblages. These changes may influence not only richness or evenness but also the temporal stability of species’ relative abundances (temporal beta-diversity). Here, we analyzed reef fish assemblage time series from the Great Barrier Reef to show that, overall, 75% of the variance in abundance among species was attributable to persistent differences in species’ long-term mean abundances. However, the relative importance of stochastic fluctuations in abundance was higher on reefs that experienced greater volatility in coral cover, whereas it did not vary with drivers of alpha-diversity. These findings imply that increased coral cover volatility decreases temporal stability in relative abundances of fishes, a transformation that is not detectable from static measures of biodiversity

    Tropical coastal fish

    Get PDF
    [Extract] Climate change is expected to affect populations and communities of tropical marine fishes in many ways, ranging from indirect effects associated with habitat degradation and altered resource availability to direct effects of rapidly changing environmental conditions. In the short-term (up to 2030), the projected impact of climate change on Australia's tropical coastal and demersal fishes is largely tied to the fate of critical benthic habitats, especially for coral reef environments, which are highly vulnerable to elevated temperature, ocean acidification and more intense storms. There is good evidence and strong consensus that climate-induced coral bleaching affects the community structure and abundance of reef-associated fishes, especially when it leads to the structural collapse of reef habitat. In the longer-term (after 2030), sea level rise and altered rainfall patterns are expected to also significantly alter coastal wetlands that are important nursery areas for estuarine and nearshore species. In addition to the effects of habitat degradation, warmer ocean temperatures are projected to cause distributional shifts in some tropical fishes, increasing the geographic ranges of some species and decreasing the ranges of others, including some commercially important species. Life history traits and population dynamics will be affected by warmer temperatures, with potential implications for fisheries yields. Altered oceanic circulation and ocean acidification could also have very significant effects on populations and communities of coastal fishes in the longer term. There are a many critical knowledge gaps in our understanding of the effect of climate change on tropical marine fish, including how predicted effects on individuals and populations will scale-up to influence community structure and function, and the degree to which fish will acclimate or adapt to the expected rapid climate change. Non-reefal environments and commercially important species are especially understudied in relation to climate change impacts. Key strategies in mitigating effects of climate change on coastal marine fishes are to maintain and restore habitat quality, incorporate climate uncertainty into fisheries management plans, and limit impacts of other human activities likely to reduce the sustainability of fish populations

    Tropical coastal fish

    Get PDF
    Climate change will affect populations and communities of marine fishes in many ways, ranging from indirect effects associated with habitat degradation and altered resource availability to direct effects of rapidly changing environmental conditions. In the short-term (up to 2030), the impact of climate change on Australia’s tropical coastal and demersal fishes is largely tied to the fate of critical benthic habitats, especially for coral reef environments, which are highly vulnerable to elevated temperature and ocean acidification. There is good evidence and high consensus that climate-induced coral bleaching affects the community structure and abundance of reef-associated fishes, especially when it leads to the structural collapse of reef habitat. In the longer-term (after 2030), sea level rise and altered rainfall patterns will also significantly alter coastal wetlands that are important nursery areas for estuarine and nearshore species. In addition to the effects of habitat degradation, warmer ocean temperatures will cause distributional shifts in some tropical fishes, increasing the geographic ranges of some species and decreasing the ranges of others, including some commercially important species. Life history traits and population dynamics will be affected by warmer temperatures, with potential implications for fisheries yields. Altered oceanic circulation and ocean acidification could have very significant effects on populations and communities of coastal fishes. However, these impacts are still poorly understood and are likely to become most apparent in the longer term. There are a many critical knowledge gaps in our understanding of the effect of climate change on tropical marine fish, including the impact of warmer temperatures on adult reproduction, and the development, survival and behaviour of larvae; the effect of ocean acidification on the development, survival and behaviour; and the degree to which fish will acclimate or adapt to the expected rapid climate change. Non-reefal environments and commercially important species are especially understudied in relation to climate change impacts. Key strategies in mitigating effects of climate change on coastal marine fishes are to maintain and restore habitat quality, incorporate climate uncertainty into fisheries management plans, and limit impacts of other human activities in coastal regions

    Assessing different causes of crown-of-thorns starfish outbreaks and appropriate responses for management on the Great Barrier Reef

    Get PDF
    The crown-of-thorns starfish Acanthaster planci (COTS) has contributed greatly to declines in coral cover on Australia's Great Barrier Reef, and remains one of the major acute disturbances on Indo-Pacific coral reefs. Despite uncertainty about the underlying causes of outbreaks and the management responses that might address them, few studies have critically and directly compared competing hypotheses. This study uses qualitative modelling to compare hypotheses relating to outbreak initiation, explicitly considering the potential role of positive feedbacks, elevated nutrients, and removal of starfish predators by fishing. When nutrients and fishing are considered in isolation, the models indicate that a range of alternative hypotheses are capable of explaining outbreak initiation with similar levels of certainty. The models also suggest that outbreaks may be caused by multiple factors operating simultaneously, rather than by single proximal causes. As the complexity and realism of the models increased, the certainty of outcomes decreased, but key areas that require further research to improve the structure of the models were identified. Nutrient additions were likely to result in outbreaks only when COTS larvae alone benefitted from nutrients. Similarly, the effects of fishing on the decline of corals depended on the complexity of interactions among several categories of fishes. Our work suggests that management approaches which seek to be robust to model structure uncertainty should allow for multiple potential causes of outbreaks. Monitoring programs can provide tests of alternative potential causes of outbreaks if they specifically monitor all key taxa at reefs that are exposed to appropriate combinations of potential causal factors

    Origins and Implications of a Primary Crown-of-Thorns Starfish Outbreak in the Southern Great Barrier Reef

    Get PDF
    The crown-of-thorns starfish (COTS) is a major predator of hard corals. Repeated COTS outbreaks in the Cairns and Central sections of the Great Barrier Reef (GBR) have been responsible for greater declines in coral cover than any other type of disturbance, including cyclones, disease, and coral bleaching. Knowledge of the precise timing and location of primary outbreaks could reveal the initial drivers of outbreaks and so could indicate possible management measures. In the central GBR, COTS outbreaks appear to follow major flooding events, but despite many years of observations, no primary outbreak has ever been unequivocally identified in the central and northern GBR. Here we locate a primary outbreak of COTS on the southern GBR which is not correlated with flooding. Instead it appears to have been the result of a combination of life history traits of COTS and prevailing oceanographic conditions. The hydrodynamic setting implies that the outbreak could disperse larvae to other reefs in the region

    Joint estimation of crown of thorns (Acanthaster planci) densities on the Great Barrier Reef

    Get PDF
    Crown-of-thorns starfish (CoTS; Acanthaster spp.) are an outbreaking pest among many Indo-Pacific coral reefs that cause substantial ecological and economic damage. Despite ongoing CoTS research, there remain critical gaps in observing CoTS populations and accurately estimating their numbers, greatly limiting understanding of the causes and sources of CoTS outbreaks. Here we address two of these gaps by (1) estimating the detectability of adult CoTS on typical underwater visual count (UVC) surveys using covariates and (2) inter-calibrating multiple data sources to estimate CoTS densities within the Cairns sector of the Great Barrier Reef (GBR). We find that, on average, CoTS detectability is high at 0.82 [0.77, 0.87] (median highest posterior density (HPD) and [95% uncertainty intervals]), with CoTS disc width having the greatest influence on detection. Integrating this information with coincident surveys from alternative sampling programs, we estimate CoTS densities in the Cairns sector of the GBR averaged 44 [41, 48] adults per hectare in 2014

    Thermal Stress and Coral Cover as Drivers of Coral Disease Outbreaks

    Get PDF
    Very little is known about how environmental changes such as increasing temperature affect disease dynamics in the ocean, especially at large spatial scales. We asked whether the frequency of warm temperature anomalies is positively related to the frequency of coral disease across 1,500 km of Australia's Great Barrier Reef. We used a new high-resolution satellite dataset of ocean temperature and 6 y of coral disease and coral cover data from annual surveys of 48 reefs to answer this question. We found a highly significant relationship between the frequencies of warm temperature anomalies and of white syndrome, an emergent disease, or potentially, a group of diseases, of Pacific reef-building corals. The effect of temperature was highly dependent on coral cover because white syndrome outbreaks followed warm years, but only on high (>50%) cover reefs, suggesting an important role of host density as a threshold for outbreaks. Our results indicate that the frequency of temperature anomalies, which is predicted to increase in most tropical oceans, can increase the susceptibility of corals to disease, leading to outbreaks where corals are abundant

    Predator-prey interactions among some intertidal gastropods on the Great Barrier Reef

    No full text
    On an intertidal reef flat at Orpheus Island on the Great Barrier Reef, the gastropods Turbo brunneus and juvenile Trochus niloticus share the same habitat with the predatory gastropod Thais tuberosa. To determine if the two prey species differed in their antipredator behaviour and interactions with the predator, we examined: (1) the distributional pattern of the three species in the field; (2) the proportion of mortality attributable to non-crushing predators (i.e. Thais tuberosa) in T. brunneus and T. niloticus, determined by the frequency of freshly dead and undamaged shells; and (3) the response of T. brunneus and T. niloticus to T. tuberosa in laboratory and field experiments. We compared the responses of hatchery-reared and wild juvenile T. niloticus to determine if lack of previous exposure to the predator affected the behaviour of cultured juveniles. Finally, (4) we studied prey choice by Thais tuberosa.\ud \ud We found that: (1) the field distribution of all three species showed high overlap and prey and predator were often found in close proximity; (2) the proportion of recently-killed, undamaged shells was 28% for T. brunneus and 10% for T. niloticus; (3) T. brunneus and T. niloticus responded very differently to the predator: Turbo brunneus showed a conventional flight escape response, moving nine times faster than normal when close to T. tuberosa. The flight response was observed in all trials with T. brunneus in the laboratory, but only in 52% of trials in the field. In contrast, T. niloticus did not change speed but instead released a white mucus in the presence of the predator. Response in the field was also less intense than in the laboratory. Cultured and wild T. niloticus showed the same response when exposed to T. tuberosa. although cultured juveniles were, on average, slightly more active than wild juveniles. Lastly, (4) Thais tuberosa showed a strong preference for T. brunneus as prey. Food value, expressed as dry flesh weight, did not explain this preference. Capture rate of the preferred species T. brunneus fell to zero in water containing mucus released by T. niloticus.\ud \ud The results indicate that predation by T. tuberosa is more intense for T. brunneus than for T. niloticus and that a likely cause for this difference lies in the antipredator responses of the two prey species. The mucous response of T. niloticus appeared to be more effective for avoiding predation by T. tuberosa than was the flight response of T. brunneus

    Chemical warfare among scleractinians: bioactive natural products from Tubastraea faulkneri Wells kill larvae of potential competitors

    No full text
    Competition for space among scleractinians by overgrowth, overtopping, extracoelenteric digestion and the use of sweeper tentacles is well recognized, but another potential mode of competitive interaction, allelopathy, is largely uninvestigated. In this study, chemical extracts from Tubastraea faulkneri Wells were tested for deleterious effects on competent larvae of 11 other species of coral belonging to seven genera of four scleractinian families. Larvae exposed to extract concentrations from 10 to 500 μg ml−1 consistently suffered higher mortality than larvae in solvent controls. Larvae of Platygyra daedalea (Ellis and Solander) and Oxypora lacera (Verrill) were the most sensitive, experiencing high mortality even at the lowest extract concentration. The toxic compounds from T. faulkneri did not kill any conspecific larvae. The estimated concentrations of active compounds within T. faulkneri tissues were 100–5000 times higher than the experimental concentrations. Pure compounds isolated from bioactive fractions of the extract were indole alkaloids identified as aplysinopsin, 6-bromoaplysinopsin, 6-bromo-2′-de-N-methylaplysinopsin and its dimer. The first three occur in other non-zooxanthellate corals in the same family as T. faulkneri, whereas the dimer is novel. These compounds could act as allelochemicals that prevent potential competitors from recruiting in the vicinity of T. faulkneri colonies and help to pre-empt interactions with competitively dominant species.\u

    Mud, marine snow and coral reefs

    No full text
    Worldwide degradation of coral reefs is widely recognized, but the exact causes have proved elusive. The authors have studied reefs in Australia and Guam for 10 to 20 years, amassing data about threats to reef welfare and developing computer models from those data to predict the effectiveness of remedial actions. Their findings suggest that control of runoff from adjoining land areas, which affects reef health in several ways, may be key to reef recovery
    • …
    corecore