2,099 research outputs found

    Interpretation of Core Extrusion Measurements When Tunnelling Through Squeezing Ground

    Get PDF
    Squeezing intensity in tunnelling often varies over short distances, even where there is no change in the excavation method or lithology. Reliable predictions of the ground conditions ahead of the face are thus essential to avoid project setbacks. Such predictions would enable adjustments to be made during construction to the temporary support, to the excavation diameter and also to the final lining. The assessment of the behaviour of the core ahead of the face, as observed by means of extrusion measurements, provides some indications as to the mechanical characteristics of the ground. If the ground exhibits a moderate time-dependent behaviour and the effects of the support measures are taken into account, the prediction of convergence is feasible. If the ground behaviour is pronouncedly time-dependent, however, convergence predictions become very difficult, because core extrusion is governed by the short-term characteristics of the ground, which may be different from the long-term properties that govern final convergence. The case histories of the Gotthard Base Tunnel and of the Vasto tunnel show that there is a weak correlation between the axial extrusions and the convergences of the tunnel. By means of the case histories of the Tartaiguille tunnel and Raticosa tunnel, it is shown that to identify potentially weak zones on the basis of the extrusion measurements, careful processing of the monitoring data is essential: the analysis of the data has to take account of the effects of tunnel support and time, and has to eliminate errors caused by the monitoring proces

    Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?

    Get PDF
    Single- and multilayer graphene and highly ordered pyrolytic graphite (HOPG) were exposed to a pure hydrogen low-temperature plasma (LTP). Characterizations include various experimental techniques such as photoelectron spectroscopy, Raman spectroscopy and scanning probe microscopy. Our photoemission measurement shows that hydrogen LTP exposed HOPG has a diamond-like valence-band structure, which suggests double-sided hydrogenation. With the scanning tunneling microscopy technique, various atomic-scale charge-density patterns were observed, which may be associated with different C-H conformers. Hydrogen-LTP-exposed graphene on SiO₂ has a Raman spectrum in which the D peak to G peak ratio is over 4, associated with hydrogenation on both sides. A very low defect density was observed in the scanning probe microscopy measurements, which enables a reverse transformation to graphene. Hydrogen-LTP-exposed HOPG possesses a high thermal stability, and therefore, this transformation requires annealing at over 1000 °C

    Operational Planning of Active Distribution Grids under Uncertainty

    No full text
    Modern distribution system operators are facing constantly changing operating conditions caused by the increased penetration of intermittent renewable generators and other distributed energy resources. Under these conditions, the distribution system operators are required to operate their networks with increased uncertainty, while ensuring optimal, cost-effective, and secure operation. This paper proposes a centralized scheme for the operational planning of active distribution networks under uncertainty. A multi-period optimal power flow algorithm is used to compute optimal set-points of the controllable distributed energy resources located in the system and ensure its security. Computational tractability of the algorithm and feasibility of the resulting flows are ensured with the use of an iterative power flow method. The system uncertainty, caused by forecasting errors of renewables, is handled through the incorporation of chance constraints, which limit the probability of insecure operation. The resulting operational planning scheme is tested on a low-voltage distribution network model using real forecasting data for the renewable energy sources. We observe that the proposed method prevents insecure operation through efficient use of system controls

    Local spectroscopy and atomic imaging of tunneling current, forces and dissipation on graphite

    Get PDF
    Theory predicts that the currents in scanning tunneling microscopy (STM) and the attractive forces measured in atomic force microscopy (AFM) are directly related. Atomic images obtained in an attractive AFM mode should therefore be redundant because they should be \emph{similar} to STM. Here, we show that while the distance dependence of current and force is similar for graphite, constant-height AFM- and STM images differ substantially depending on distance and bias voltage. We perform spectroscopy of the tunneling current, the frequency shift and the damping signal at high-symmetry lattice sites of the graphite (0001) surface. The dissipation signal is about twice as sensitive to distance as the frequency shift, explained by the Prandtl-Tomlinson model of atomic friction.Comment: 4 pages, 4 figures, accepted at Physical Review Letter

    Ninth Circuit: The Gender Bias Task Force

    Get PDF
    In 1990, the federal courts of the Ninth Circuit began to examine the effects of gender on the business of the courts. The pioneering FinalReport of the Ninth Circuit Gender Bias Task Force1 was issued in July 1993 and the Ninth Circuit has worked to implement the task force\u27s recommendations for several years. To assist others setting forth on a similar journey, this article summarizes the circuit\u27s experience in undertaking a study of this magnitude and duration

    Predicting Fracture in the Proximal Humerus using Phase Field Models

    Full text link
    Proximal humerus impacted fractures are of clinical concern in the elderly population. Prediction of such fractures by CT-based finite element methods encounters several major obstacles such as heterogeneous mechanical properties and fracture due to compressive strains. We herein propose to investigate a variation of the phase field method (PFM) embedded into the finite cell method (FCM) to simulate impacted humeral fractures in fresh frozen human humeri. The force-strain response, failure loads and the fracture path are compared to experimental observations for validation purposes. The PFM (by means of the regularization parameter l0l_0) is first calibrated by one experiment and thereafter used for the prediction of the mechanical response of two other human fresh frozen humeri. All humeri are fractured at the surgical neck and strains are monitored by Digital Image Correlation (DIC). Experimental strains in the elastic regime are reproduced with good agreement (R2=0.726R^2 = 0.726), similarly to the validated finite element method [9]. The failure pattern and fracture evolution at the surgical neck predicted by the PFM mimic extremely well the experimental observations for all three humeri. The maximum relative error in the computed failure loads is 3.8%3.8\%. To the best of our knowledge this is the first method that can predict well the experimental compressive failure pattern as well as the force-strain relationship in proximal humerus fractures

    Individualising drug dispensaries in a university hospital

    Get PDF
    BACKGROUND: In hospitals and other healthcare institutions drugs are routinely stored in designated satellite areas on the wards. Often ad hoc decisions are made by clinicians and nurses regarding drug type and quantity to be stored. As a result the number of different drugs and drug packages in storage tends to increase, which may lead to inefficient drug handling and become a potential risk factor in the medication control process. Based on an extended analysis of drug inventories on three different wards it was hypothesized that a ward-individualised formulary (WIF) can halve the number of different drugs and drug packages in a drug dispensary and hence reduce bound capital, money lost through expired drugs, and facilitate safer drug handling. The interdisciplinary intervention described here took place on three 40-bed wards in a 700-bed university hospital housing patients in general internal medicine, haematology, nephrology and oncology. METHODS: A WIF was defined by including all drugs from the hospital formulary ordered at least three times in the past six months. A pharmacist, a nurse and a clinician reviewed the inclusion list of drugs and clinicians were strongly encouraged to prescribe drugs primarily from the WIF. Drugs excluded from the WIF were removed from the drug dispensaries and the number of included drug packages stored in the remote dispensaries was reduced according to their order history. Drug inventory on the wards was monitored from February 2004 to April 2006. RESULTS: The initial drug dispensary inventories on wards A, B and C consisted of 2031, 1667 and 1536 packages with 943, 897 and 831 different drugs valued at h 83 931, h 44 590 and h 57 285. respectively. After adjusting the drug dispensaries according to the WIF drug dispensary inventories on wards A, B and C consisted of 808 (-60%), 600 (-64%) and 485 (-68%) packages with 415 (-56%), 334 (-63%) and 376 (-55%) different drugs valued euro 28 012 (-67%), euro 10 381 (-77%) an euro 17 898 (-69%). The overall reductions the number of packages, the different drugs and the drug value were comparable (<50%) and remained low during the entire observation time (A: 18 months, B: 13 months, C: 8 months). CONCLUSION: Rearranging dispensaries by individualizing the drug inventory according to the needs of the ward by introducing a WIF is a valuable means to significantly (<50%) reduce [1] the number of drug packages, [2] the number of different drugs stored and [3] the capital bound drugs. The positive effects of the WIF are supported by the interdisciplinary interaction of the different professional groups involved in the medication process. The leaner drug dispensaries offer optimal basic conditions for introducing new IT-based systems to further increase the safety of the medication process
    • …
    corecore