7,302 research outputs found

    Aerodynamic characteristics of a tandem wing configuration of a Mach number of 0.30

    Get PDF
    An investigation was conducted to determine the aerodynamic characteristics of a tandem wing configuration. The configuration had a low forward mounted sweptback wing and a high rear mounted sweptforward wing jointed at the wing tip by an end plate. The investigation was conducted at a Mach number of 0.30 at angles of attack up to 20 deg. A comparison of the experimentally determined drag due to lift characteristics with theoretical estimates is also included

    Influence of optimized leading-edge deflection and geometric anhedral on the low-speed aerodynamic characteristics of a low-aspect-ratio highly swept arrow-wing configuration

    Get PDF
    An investigation conducted in the Langley 7 by 10 foot tunnel to determine the influence of an optimized leading-edge deflection on the low speed aerodynamic performance of a configuration with a low aspect ratio, highly swept wing. The sensitivity of the lateral stability derivative to geometric anhedral was also studied. The optimized leading edge deflection was developed by aligning the leading edge with the incoming flow along the entire span. Owing to spanwise variation of unwash, the resulting optimized leading edge was a smooth, continuously warped surface for which the deflection varied from 16 deg at the side of body to 50 deg at the wing tip. For the particular configuration studied, levels of leading-edge suction on the order of 90 percent were achieved. The results of tests conducted to determine the sensitivity of the lateral stability derivative to geometric anhedral indicate values which are in reasonable agreement with estimates provided by simple vortex-lattice theories

    Subsonic longitudinal aerodynamic characteristics and engine pressure distributions for an aircraft with an integrated scramjet designed for Mach 6 cruise

    Get PDF
    A 1/10-scale model of a proposed hypersonic aircraft with an integrated scramjet was tested. The investigation took place over a Mach number range from 0.2 to 0.7 and an angle of attack range from 2 deg to approximately 17 deg at a sideslip angle of 0 deg. The primary configuration variables studied were engine location, internal engine geometry, and external engine geometry. The results are presented without analysis

    Leading-edge deflection optimization for a highly swept arrow wing configuration

    Get PDF
    Tests were also conducted to determine the sensitivity of the lateral stability derivative C sub l sub beta to geometric anhedral. The optimized leading edge deflection was developed by aligning the leading edge with the incoming flow along the entire span. Owing to the spanwise variation of upwash, the resulting optimized leading edge was a smooth, continuously warped surface. For the particular configuration studied, levels of leading edge suction on the order of 90 percent were achieved with the smooth, continuously warped leading edge contour. The results of tests conducted to determine the sensitivity of C sub l sub beta to geometric anhedral indicate values of delta C sub l sub beta/delta T which are in reasonable agreement with estimates provided by simple vortex lattice theories

    Effect of canard position and wing leading-edge flap deflection on wing buffet at transonic speeds

    Get PDF
    A generalized wind-tunnel model, with canard and wing planform typical of highly maneuverable aircraft, was tested. The addition of a canard above the wing chord plane, for the configuration with leading-edge flaps undeflected, produced substantially higher total configuration lift coefficients before buffet onset than the configuration with the canard off and leading-edge flaps undeflected. The wing buffet intensity was substantially lower for the canard-wing configuration than the wing-alone configuration. The low-canard configuration generally displayed the poorest buffet characteristics. Deflecting the wing leading-edge flaps substantially improved the wing buffet characteristics for canard-off configurations. The addition of the high canard did not appear to substantially improve the wing buffet characteristics of the wing with leading-edge flaps deflected

    Neighbour transitivity on codes in Hamming graphs

    Full text link
    We consider a \emph{code} to be a subset of the vertex set of a \emph{Hamming graph}. In this setting a \emph{neighbour} of the code is a vertex which differs in exactly one entry from some codeword. This paper examines codes with the property that some group of automorphisms acts transitively on the \emph{set of neighbours} of the code. We call these codes \emph{neighbour transitive}. We obtain sufficient conditions for a neighbour transitive group to fix the code setwise. Moreover, we construct an infinite family of neighbour transitive codes, with \emph{minimum distance} δ=4\delta=4, where this is not the case. That is to say, knowledge of even the complete set of code neighbours does not determine the code

    Lateral-directional stability characteristics of a wing-fuselage configuration at angles of attack up to 44 deg

    Get PDF
    An investigation has been conducted to determine the effects of configuration variables on the lateral-directional stability characteristics of a wing-fuselage configuration. The variables under study included variations in the location of a single center-line vertical tail and twin vertical tails, wing height, fuselage strakes, and horizontal tails. The study was conducted in the Langley high-speed 7-by 10-foot tunnel at a Mach number of 0.30, at angles of attack up to 44 deg and at sideslip angles of 0 deg and plus or minus 5 deg

    A survey of parallel algorithms for fractal image compression

    Get PDF
    This paper presents a short survey of the key research work that has been undertaken in the application of parallel algorithms for Fractal image compression. The interest in fractal image compression techniques stems from their ability to achieve high compression ratios whilst maintaining a very high quality in the reconstructed image. The main drawback of this compression method is the very high computational cost that is associated with the encoding phase. Consequently, there has been significant interest in exploiting parallel computing architectures in order to speed up this phase, whilst still maintaining the advantageous features of the approach. This paper presents a brief introduction to fractal image compression, including the iterated function system theory upon which it is based, and then reviews the different techniques that have been, and can be, applied in order to parallelize the compression algorithm
    corecore