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ABSTRACT 9 

Current variability of precipitation (P) and its response to surface temperature (T) are analysed using coupled 10 

(CMIP5) and atmosphere-only (AMIP5) climate model simulations and compared with observational estimates. 11 

There is striking agreement between Global Precipitation Climatology Project (GPCP) observed and AMIP5 12 

simulated P anomalies over land both globally and in the tropics suggesting that prescribed sea surface 13 

temperature and realistic radiative forcings are sufficient for simulating the interannual variability in continental 14 

P. Differences between the observed and simulated P variability over the ocean, originate primarily from the 15 

wet tropical regions, in particular the western Pacific, but are reduced slightly after 1995. All datasets show 16 

positive responses of P to T globally of around 2 %/K for simulations and 3-4 %/K in GPCP observations but 17 

model responses over the tropical oceans are around 3 times smaller than GPCP over the period 1988-2005. The 18 

observed anticorrelation between land and ocean P, linked with El Niño Southern Oscillation, is captured by the 19 

simulations. All data sets over the tropical ocean show a tendency for wet regions to become wetter and dry 20 

regions drier with warming. Over the wet region (≥75% precipitation percentile), the precipitation response is 21 

~13-15%/K for GPCP and ~5%/K for models while trends in P are 2.4%/decade for GPCP, 0.6% /decade for 22 

CMIP5 and 0.9%/decade for AMIP5 suggesting that models are underestimating the precipitation responses or a 23 

deficiency exists in the satellite datasets. 24 

 25 

1. Introduction 26 
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The change in the global water cycle in a warming climate is a primary concern of society [Meehl et al., 2007]. 27 

Model projections have indicated significant water cycle changes, with the intensification of extreme 28 

precipitation, the already wet areas getting wetter and the dry areas getting drier [Allan et al., 2010; Seager and 29 

Naik, 2011; Noake et al., 2012]. There is a robust physical basis for expecting precipitation (P) to increase in the 30 

global mean and in particular for regions of moisture convergence as surface temperature (T) rises, relating to 31 

energy and moisture balance constraints [Held and Soden, 2006; Mitchell et al., 1987; Muller and O’Gorman, 32 

2011; Seager and Naik, 2011]. Using multi-satellite observations, Liu and Allan [2012] assessed the consistency 33 

of the observed variability in P, and it was found that there is good agreement among data sets including GPCP 34 

(Global Precipitation Climatology Project) [Adler et al., 2008], SSM/I (Special Sensor Microwave Imager) 35 

[Wentz and Spencer, 1998; Vila et al., 2010],  AMSRE (Advanced Microwave Scanning Radiometer - Earth 36 

Observing System) [Lobl, 2001], and TMI (Tropical Rainfall Measuring Mission (TRMM) Microwave Imager) 37 

over the tropical ocean and between GPCP and the TRMM 3B42 product [Huffman et al., 2007] over the 38 

tropical land (expected since both data sets use very similar gauge analyses and methodologies).  Comparing 39 

climate model simulations with observations over the tropical oceans, Allan et al. [2010] found that the wet 40 

region (highest 30% of monthly precipitation values) is becoming wetter and the dry region (lowest 70% of 41 

monthly precipitation values) is becoming drier. However, results are sensitive to data sets and time period [Liu 42 

and Allan, 2012]. 43 

 In the present study, we assess the current changes in global P simulated by historical scenarios from phase 5 44 

of the Coupled Model Intercomparison Project (CMIP5) and the atmosphere-only experiments (AMIP5) which 45 

are forced by realistic sea surface temperature (SST) and sea ice and radiative forcings. The aim of the present 46 

study is to evaluate how realistic and robust the models are in simulating the recent past, particularly over the 47 

satellite microwave measurement era. We assess the consistency and discrepancy between the simulations and 48 

the observations which has implications for the confidence in the projections of future climate change. 49 

 50 

2. Data sets 51 
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We consider three observational data sets in the present study (GPCP, TMI and TRMM 3B42; Table 1). The 52 

GPCP is a global blended data set at 2.5
o
 resolution containing land-based rain-gauges, sounding observations, 53 

microwave radiometers and infrared radiances [Adler et al., 2008]. The TMI data set only covers the tropical 54 

ocean from 40
o
N to 40

o
S at 0.25

o
 resolution. The TRMM 3B42 covers the area from 50

o
N to 50

o
S at 0.25

o
 55 

resolution including both the land and ocean area but changes in ocean P are not considered realistic [Liu and 56 

Allan, 2012] because the existing AMSU-B algorithm failed to detect light rain over oceans, particularly in the 57 

subtropical highs [Huffman et al . 2007]; a corrected version is expected to be available soon. The data over the 58 

land region are consistent with GPCP observations. Observed T is the temperature at 2 m from the European 59 

Centre for Medium-range Weather Forecasts (ECMWF) INTERIM reanalysis [Dee et al., 2011] accumulated 60 

from six hourly 0.25
o
 data  interpolated from the original N128 reduced Gaussian grid (~0.7

o
). Blended T from 61 

the HadCRUT3 data set [Brohan et al., 2006] is also used for comparison purpose.  Ocean (land) points are 62 

defined where all four neighbouring grid points are also ocean (land), aggregating from a high resolution 63 

(0.25x0.25 degree) land/sea mask; coastal grid points, which may be less reliable in the observational data (e.g. 64 

Huffman and Bolvin, 2011), are excluded from the ocean-only and land-only comparisons in both models and 65 

observations. Details of the currently available CMIP5 historical experiments (12 models) and the AMIP5 66 

experiments (10 models) and their forcings are at  http://cmip-pcmdi.llnl.gov/cmip5/. To ensure equal weighting 67 

from each model, we consider only one ensemble member from each CMIP5 and AMIP5 model to form 68 

composite CMIP5 and AMIP5 data sets (Table 1). 69 

3.  Temperature and precipitation variations 70 

The deseasonalized T and P anomalies from ERA INTERIM, CMIP5, AMIP5 and satellite observations are 71 

plotted in Fig. 1. Mean P is also plotted in Fig. S1 and listed in Table S2. The reference period is from 1988-72 

2004 except for the TMI and TRMM data sets (1998-2004). Unlike the AMIP experiment which prescribes 73 

observed SST, the CMIP5 T simulations do not follow ERA INTERIM and have a large standard deviation 74 

since CMIP5 models generate their own ocean variability. The CMIP5 simulations contain realistic radiative 75 

forcings and can simulate cooling after the volcanic eruptions of El Chichón in 1982 and Mount Pinatubo in 76 



4 
 

1991 that are qualitatively consistent with AMIP5 simulations and observations (e.g. Fig. 1c). The El Niño 77 

effect in 1988, 1998, 2005 and the La Niña effect in 1985, 1989, 2008 are clearly seen in the AMIP5 and ERA 78 

INTERIM T anomalies (Figs. 1g-1i).  79 

There is striking agreement between observed and AMIP5 simulated P anomalies over land both globally 80 

(Fig. 1e; r=0.6) and in the Tropics (30
o
N -30

o
S) (Fig. 1k; r=0.7). This suggests that prescribing the observed 81 

SST and realistic radiative forcings is sufficient for simulating interannual variability in land P.  In general 82 

warmer years are associated with negative land P anomalies as noted previously [Adler et al., 2008; Gu et al., 83 

2007] and will be discussed in Section 4.  84 

GPCP displays greater P variation than both CMIP5 and AMIP5 globally (Fig. 1f) (the standard deviation of 85 

P from GPCP (~0.03 mm/day) is also higher than the individual models (~0.02 mm/day)) which is determined 86 

by the global and tropical oceans  (Figs. 1d and 1j), though both AMIP5 and observations show positive phase 87 

correlations with T anomalies after 1995. To investigate the origin of these discrepancies, P anomaly 88 

differences between the AMIP5 ensemble mean and GPCP are calculated over the tropical ocean (Fig. 2a). The 89 

anomaly difference standard deviation (red line in Fig. 2a) is slightly reduced after 1995. 90 

Based on the periods of positive and negative area mean anomaly differences in Fig. 2a, the maps of mean 91 

anomaly differences are calculated for all positive (P
+
) and negative (P

-
) AMIP5 minus GPCP anomaly 92 

composites over the period 1988-2008. The difference of P
+
–P

-
 is plotted in Fig. 2b. Regions of positive 93 

difference (the west and central south Pacific and western Indian Ocean) display a sign of variation that is 94 

consistent with the anomaly differences. This is further confirmed by plotting correlations between the local P 95 

anomaly difference time series and that of the tropical ocean mean (Fig. 2c). The regions that appear to 96 

contribute most strongly to the changes in AMIP5-GPCP anomaly differences are associated with the largest 97 

climatology difference between AMIP5 mean and GPCP P (Fig. 2d).  98 

There are a number of changes to the observed ocean data used in this study which may contribute to the 99 

discrepancy discussed above. For GPCP the switch from Outgoing Longwave Radiation (OLR) Precipitation 100 

Index (OPI) to Adjusted Geosynchronous Observational Environmental Satellite (GOES) Precipitation Index 101 
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(AGPI) in mid-1987 is known to introduce an inhomogeneity in variance.  The higher quality of the AGPI is the 102 

basis for examining changes starting in 1988 as well as 1979. Subsequent transitions between SSM/I sensors in 103 

1992 and 1995, and a change in aggregating the infrared data in 1996 are considered unlikely to provoke 104 

significant differences.  As well, the GPCP shifts from low-orbit to geosynchronous-orbit IR data over the 105 

Indian Ocean in mid-1998 (Huffman and Bolvin, 2011).  Removing the Indian Ocean (20
o
E-120

o
E) from the 106 

analysis improves the AMIP5-GPCP comparison much less than removing the West Pacific Ocean (Fig. S2b, 107 

S3b; Table S3), suggesting that the shift in Indian Ocean IR coverage does not introduce an inhomogeneity. 108 

Finally, the source of surface data used in the SST analysis shifts from Comprehensive Ocean-Atmosphere Data 109 

Set (COADS) to Global Telecommunications System (GTS) in 1998 (Hurrell et al. 2008), reducing the surface 110 

data population available to provide calibration thereafter, but not obviously biasing the results. 111 

Natural changes may also influence the GPCP-AMIP time-series discrepancy.  Both models and 112 

observational retrievals tend to exhibit different errors for different mean states of the atmosphere and therefore 113 

one might anticipate bias changes as the atmosphere changes. For example, the changing character of El Niño 114 

Southern Oscillation (ENSO) from an East Pacific (EP) to Central Pacific (CP)-dominated El Nino [Yeh et al., 115 

2009] may influence the statistical comparison of AMIP5 and GPCP since the climate simulation bias is 116 

strongest in the west Pacific. Indeed, the CP El Nino years (1990, 1994 and 2004) appear to correspond with 117 

negative AMIP5-GPCP in Fig. 2a. A related issue is the shift in the Pacific Decadal Oscillation in the mid-118 

1990's. Changes in volcanic activity may also influence the GPCP-AMIP differences (large volcanic eruptions 119 

early in the record in 1982 and 1991) and this is another possibility to explore (e.g. Gu et al. 2007).  Additional 120 

joint work by modelers and observationalists is needed to explicate the basis for the differences. 121 

 Fig. 2e shows the scatter plot of the P anomalies between the AMIP5 mean and GPCP data sets over the 122 

tropical ocean, together with fitted lines (thick) over two periods (1988-1995 and 1996-2008). The correlation 123 

coefficient is -0.11 for 1988-1995 and is 0.23 over 1996-2008. The fitted lines between individual models and 124 

GPCP are also plotted in thin dashed line over these two periods: all models have positive and higher 125 

correlations over 1996-2008. The error source is quite complicated and merits further investigation but 126 
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nevertheless is suggestive of deficiency of the ocean observations prior to the introduction of the SSM/I F13 127 

data in 1995. It is expected that the comparison should be improved using the final version of GPCP 2.2 data 128 

[Huffman and Bolvin, 2011]. 129 

4. Precipitation response to surface temperature variation 130 

Precipitation response to the seasonal and interannual surface temperature variations are displayed in Figs. 131 

3a-3c and quantified in Tables 2 and S1. The relationships from CMIP5 and AMIP5 models are very close over 132 

the different regions analysed. For comparison purposes, unless stated otherwise, the data period used from now 133 

on is 1988-2005 for CMIP5, AMIP5 and GPCP data sets and from 1998-2008 for the TMI and TRMM 3B42 134 

data sets. 135 

The thick solid fitted lines denote statistically significant  correlation (r) between P and T based on the two-136 

tailed test using Pearson critical values at the level of 5% (dashed fitted lines denote correlations are not 137 

significant). The degree of freedom of the time series is calculated by first determining the time interval (to ) 138 

between effectively independent samples [Yang and Tung, 1998] but additionally assuming to ≤12. (assuming 139 

that periods separated by 12 or more months are independent). 140 

Over the tropical ocean, the correlations between P and T are all positive. The precipitation change is ~3%/K 141 

for CMIP5 and AMIP5 simulations. It is 10%/K for GPCP P and ERA INTERIM T and 7.9 %/K if HadCRUT3 142 

T is used, close to 10.9%/K calculated by Adler et al. [2008] using an earlier version of GPCP.  143 

Negative correlations over the tropical land (–3.4 %/K for CMIP5 and –1.9%/K for AMIP5) are similar to 144 

GPCP (-3.1 %/K using ERA INTERIM T and -1.2%/K for HadCRUT3 T), but is smaller than TRMM 3B42 (-145 

10 %/K for ERA INTERIM T and -11%/K for HadCRUT3 T) although this is for a short time period and most 146 

of the correlations are not statistically significant. Over the globe the GPCP dP/dT is positive and higher than 147 

the models (Table 2).  148 

The response over the tropical ocean and the tropical land is of opposite sign (Fig. 3d) for all datasets. The 149 

correlations are strong and significant (Table 2) and relate to ENSO [Gu et al., 2007], although monsoons must 150 
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also play a vital role [Hsu et al. 2010]. A similar relationship is also found between the global land and the 151 

global ocean (Fig. 3e). 152 

The strong relationship between GPCP and AMIP5 precipitation anomalies over the tropical land (Fig. 3f) is 153 

evident for the periods 1979-2008 (r=0.71), 1988-2008 (r=0.75) and 1998-2008 (r=0.74) but is weaker for 154 

AMIP5/TRMM 3B42 (r=0.35) over the 1998-2008 period. The agreement between the AMIP5 ensemble mean 155 

and GPCP data over tropical and global land is encouraging and suggests a strong control of ocean temperature 156 

on land precipitation as noted previously [Gimeno et al., 2010]. 157 

5. Responses from wet and dry regions over the tropical ocean 158 

    To further understand the source of discrepancy between tropical ocean P anomalies we now analyse the 159 

variability in terms of the monthly rainfall intensity distribution. Following Liu and Allan [2012], monthly 160 

precipitation is divided into percentile bins in ascending order of intensity and the anomaly time series of P 161 

averaged over the percentile bin is calculated. The anomaly time series of the area-weighted T over the tropical 162 

ocean is also calculated and the linear least square fit gradient, dP/dT, is computed. The percentage change 163 

(dP%/dT) is calculated by dividing dP/dT by the mean P for each bin over the reference period of 1988-2004.  164 

The dP%/dT and dP%/dt trend over the precipitation percentile bins are plotted in Figs 4a-4b and computed in 165 

Table 3. The non-linear scale of precipitation percentile is chosen since the higher percentiles contribute more 166 

to overall precipitation. The response is uncertain over the lower percentile bins, but is in general negative, 167 

consistent with Allan et al. [2010]. The wet region is characterized by positive dP%/dT in all data sets although 168 

the GPCP response is stronger. For dP%/dt, there is no physical reason to anticipate trends in tropical mean P 169 

unless there are associated trends in T or radiative forcings [Andrews et al., 2010]. The bin separating the 170 

positive and negative responses is around the 75% percentile for both calculations, consistent with previous 171 

analysis [Allan et al., 2010]. 172 

dP%/dT relationships over the wet (≥75% precipitation percentile) region are positive and significant for all 173 

data sets. For GPCP data over the wet region, the change is 15%/K, around three times the model simulated 174 

responses and explains the discrepancy identified for the tropical ocean mean dP/dT discussed in Section 4. 175 
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Over the dry region the changes in P from models and GPCP data are quite consistent (~ -6%/K) when ERA 176 

INTERIM T is used (Fig. 4a).  177 

The precipitation anomaly time series over the wet and dry regions is plotted in Figs. 4c and 4d. The general 178 

trend is positive over the wet region and negative over the dry region despite the reduced trend in T since the 179 

1998 El Niño. The correlations between P over the wet and dry regions are -0.62 and -0.74 for CMIP5 and 180 

AMIP5 respectively and are significant. The GPCP variation in dry region P appears inconsistent with the 181 

AMIP5 ensemble after 1998 and is suggestive of a change in the sensitivity to light rainfall; the correlation 182 

between P over the wet and dry regions is insignificant (-0.12). For GPCP data, the precipitation trend over the 183 

wet region is 2.4 %/decade, close to previous estimates by Allan et al. [2010] but larger than CMIP5 and 184 

AMIP5 responses. Consistent with the tropical ocean mean comparison, correlation between GPCP and AMIP5 185 

P in the wet region is improved after 1995 (r=0.06 over 1988-1995; r=0.72 over 1996-2008). Conversely, over 186 

the dry regions of the tropical ocean, agreement between AMIP5 and GPCP data becomes poorer after 1995 187 

(r=0.38 over 1988-1995 and r=0.15 over 1996-2008). Over the dry region the CMIP5 and AMIP5 responses are 188 

substantially smaller in magnitude than GPCP but all data sets show a drying of the dry regions, though the 189 

correlations (r~0.3) are insignificant. 190 

6. Summary  191 

Current changes in precipitation over land and ocean are diagnosed from CMIP5 climate model simulations 192 

and compared with blended observations from GPCP and data from the TRMM satellite. Agreement between 193 

precipitation anomalies from GPCP and AMIP5 data set over the land (r~0.6) indicates that the atmosphere 194 

processes over the land are well represented by simulations including realistic SST and sea-ice changes and 195 

radiative forcings. Discrepancies between the observed and simulated tropical ocean P variability is found to 196 

originate primarily from the wet regions, in particular the west Pacific, but is reduced for the most recent period 197 

(1996-2008). However, differences over the dry regions of the tropical ocean are also evident and show poorer 198 

agreement between AMIP5 and GPCP data after 1995. This suggests that observed precipitation variability over 199 
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the ocean is sensitive to changes in the observing system; changes in ENSO character combined with model-200 

satellite bias spatial signature may also influence the AMIP5–GPCP bias and trend differences.  201 

Despite the discrepancies, in all datasets considered, global and tropical ocean precipitation increases robustly 202 

with warming although observed responses appear stronger than those from models. Over the time period 1988-203 

2005 the responses are 2.0%/K for CMIP5, 2.3 %/K for AMIP5 and 3-4 %/K for GPCP over the globe. Tropical 204 

ocean responses are larger but the responses over the tropical ocean and the tropical land are of opposite sign 205 

due to ENSO variability [Gu et al., 2007]. There is a weak negative relationship between P and T over tropical 206 

land but the relationship between precipitation over the tropical land and the tropical ocean is strongly negative 207 

(r ≤ -0.5). 208 

The analysis of precipitation change with temperature and with time show positive changes over the high 209 

precipitation percentile bins and negative change over the lower precipitation percentile bins, consistent with 210 

previous studies [Lau and Wu, 2011]. Though the detailed precipitation changes still vary from model to 211 

observations and from model to model, the general characteristics of the precipitation variation and responses to 212 

the surface temperature variation are consistent. This supports the strong physical basis for expecting increased 213 

global precipitation with warmer surface temperatures due to energy constraints [Allen and Ingram, 2002] and 214 

for anticipating enhanced precipitation minus evaporation patterns due to moisture balance constraints [Held 215 

and Soden, 2006] and energy constraints [Muller and O’Gorman, 2011]. However, further work is required to 216 

disentangle fast precipitation responses to radiative forcings from the thermodynamic responses [Andrews et al., 217 

2010; Ming et al., 2010; Wild et al., 2008] and to resolve the discrepancy between current interannual 218 

variability in observed and simulated tropical ocean precipitation. 219 
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Figure captions 290 

 291 

Fig. 1. Temperature and precipitation anomaly time series relative to the reference period of 1988-2004 292 

over the global (a-f) and the tropical (30
o
S-30

o
N) (g-l) areas except for TMI and TRMM 3B42 from 293 

1998-2004. The black line is ERA INTERIM for temperature (a-c and g-i) and GPCP for precipitation 294 

(d-f and j-l). Shaded curves denote the CMIP5 and AMIP5 ensemble mean ± one standard deviation . 295 

Five month running means are applied.  296 

 297 

Fig. 2. (a)  Time series of the area mean P anomaly difference (AMIP5 ensemble mean minus GPCP) 298 

over the tropical ocean, together with the five month running mean (thick black line) and the standard 299 

deviation over  1979-1995 and 1996-2008 periods (red), (b) the mean difference composite between 300 

positive anomaly months and negative anomaly months from 1988-2008 based on (a), (c) the correlation 301 

between the local anomaly difference time series and that from (a) over the period of 1988-2008, (d) the 302 

P climatology difference between AMIP5 ensemble mean and GPCP over 1988-2008 and (e) scatter plot 303 

of tropical ocean P anomalies between AMIP5 ensemble mean and GPCP over 1988-1995 and 1996-304 

2008 periods , together with the fitted lines from AMIP5 ensemble mean and individual models.  305 

 306 

Fig. 3. Scatter plot of P and T anomalies (a-c) and P anomalies over the land and the ocean (d-e) from 307 

CMIP5/AMIP5 models and satellite-based observations and between AMIP5 and observed P anomalies 308 

over tropical land (f). Plotted linear fits are solid where significant at the 95% confidence level. 309 

 310 

Fig. 4. The change of tropical ocean precipitation with (a) tropical ocean mean temperature (dP%/dT) 311 

and (b) time (dP%/dt) over different precipitation percentile bins and precipitation time series over the 312 

wet (c) (≥75% precipitation percentile)  and dry (d)  (<75% precipitation percentile) regions. Also 313 

displayed are CMIP5 and AMIP5 ensemble mean (solid line) ± one standard deviation (shaded area). 314 
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Solid symbols highlight significant correlations over the percentile bin and the time series is five month 315 

running mean. The seasonal cycle has been removed from all datasets. 316 

 317 

318 
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 319 

Table 1. Data sets and their properties (r1 is the first member of the model run). 320 

 321 
 

Data set 

 

Resolution 

Lat x Lon 

AMIP5 

1979-2008 

monthly 

CMIP5 

1979-2005 

Monthly 

 

 

BCC-CSM 

CanESM2 

CCSM4 

CNRM-CM5 

CSIRO-Mk3.6 

GISS-E2 

HadGEM2 

INMCM4 

IPSL-CM5A-LR 

MIROC5  

MPI-ESM-LR 

MRI-CGCM3   

NorESM1-M 

  

2.77o x 2.81o 

2.77o x 2.81o 

0.94o x1.25o 

1.39o x 1.41o 

1.85o x1.88o 

2.0o x2.5o 

1.25o x1.88o  

1.5o x 2.0o 

1.89o x 3.75o 

1.39o x 1.41o 

1.85o x1.88o 

1.11o x 1.13o 

1.89o x 2.5o 

 

 

 

r1 

 

r1 

 

r1 

r1 

r1 

r1 

r1 

r1 

r1 

r1 

 

 

r1 

r1 

r1 

r1 

r1 

r3 

r1 

r1 

r1 

r1 

 

r1 

r1 

 

GPCP v2.2 

1979 – 2010 
Combined observed precipitation from satellite and 

rain gauges. Monthly data, global ocean and land, 

2.5o resolution.  

TMI v4 

1997 – present 
 

Monthly data, tropical ocean only (40oN -40oS), 

0.25o  resolutions.  

TRMM  3B42 v6 

1998 – present 

Tropical ocean and land (50oN -50oS), 0.25o 

resolution. (TMI, SSM/I, AMSR), daily data.  

ERA INTERIM 

1979 - present 
6 hourly, global, 0.25o resolution. 

HadCRUT3 

1979 - 2011 
Monthly data, 5o resolution. 

 322 

 323 

324 
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 325 

Table 2. Relationships of dP/dT and dPland/dPocean  over different region and time period. Significant correlation coefficient 326 

(r) at the 95% confidence level are marked in bold. Δm is the error range of the gradient m. Values are in the round 327 

bracket when HadCRUT3 T is used and values in square bracket are the ranges of m from ensemble members. TMI ocean 328 

and TRMM 3B42 land datasets are combined for dPland / dPocean  calculations. The values for each model runs are listed in 329 

Table S1. 330 

 331 
 

 

Data set 

 

 

Period 

dP/dT  dPland /dPocean 

Global  Tropical ocean Tropical land Global Tropical 

 

m±Δm 

(%/K) 

 

r 

 

m±Δm 

(%/K) 

 

r 

 

m±Δm 

(%/K) 

 

r 

 

 

m±Δm 

 

r 

 

 

m±Δm 

 

r 

GPCP v2.2 

 

TMI ocean/  

TRMM 3B42 land 

 

CMIP5 

 

AMIP5 

1988-2005 

 

1998-2008 

 

 

1988-2005 

 

1988-2005 

3.8±0.5 

(3.1±0.5) 

 

 

 

2.0±0.04 

[0.7 to 2.9] 

2.3±0.06 

[1.6 to 3.6] 

0.48 

(0.43) 

 

 

 

0.72 

 

0.63 

10.3±1.0 

(7.9±0.9) 

15.5±1.5 

(17.2±1.5) 

 

3.1±0.1 

[1.4 to 4.4] 

3.0±0.17 

[-0.4 to 5.5] 

0.57 

(0.52) 

0.68 

(0.71) 

 

0.51 

 

0.35 

-3.1±0.9 

(-1.2±1.0) 

-10.0±1.5 

(-11.1±1.9) 

 

-3.4±0.2 

[-13.4 to 0.6] 

-1.9±0.33 

[-7.4 to 0.7] 

-0.22 

(-0.08) 

-0.51 

(-0.46) 

 

-0.31 

 

-0.12 

-0.36±0.08 

 

 

 

 

-1.1±0.03 

[-2.2 to -0.23] 

-1.2±0.04 

[-1.9 to -0.7] 

-0.30 

 

 

 

 

-0.52 

 

-0.54 

 

-0.81±0.09 

 

-0.97±0.11 

 

 

-1.6±0.04 

[-3.2 to -0.4] 

-1.5±0.05 

[-2.7 to -0.7] 

 

-0.52 

 

-0.61 

 

 

-0.59 

 

-0.54 

 

 332 

 333 

 334 

 335 

 336 

Table 3. Tropical precipitation change with temperature and time. Correlation (r) is in bold when significant at the 95% 337 

confidence level. Values are in the round bracket when HadCRUT3 T is used and values in square bracket are the ranges 338 

of m from ensemble members. The T is the area mean over the tropical ocean (30oN -30oS ). 339 

 340 
 

Data set 

 

Period 

dPwet /dT dPdry /dT dPwet /dt dPdry/t 

m±Δm 

(% /K) 

r m±Δm 

(% /K) 

r m±Δm 

(%/dec) 

r m±Δm 

(%/dec) 

r 

GPCP v2.2 1988-2005 15±1.0 

(13±0.8) 
0.71 

(0.75) 

-5.9±3.1 

(-11.6±2.6) 

-0.13 

(-0.30) 

2.4±0.32 0.44 -3.5±0.76 -0.30 

CMIP5 1988-2005 4.6±0.2 

[1.7 to 8.3] 
0.53 -5.4±0.3 

[-13 to 4] 
-0.31 0.6±0.09 

[-0.1 to 1.3 ] 

0.42 -0.5±0.12 

[-2.6 to 1.4] 

-0.29 

AMIP5 1988-2005 5.4±0.3 

[1.8 to 8.0] 
0.40 -6.0±0.5 

[-15 to 1.4] 
-0.24 0.9±0.16 

[0.3 to  1.6] 

0.36 -1.5±0.28 

[-3.7 to 0.2] 

-0.35 

 341 

 342 

 343 
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