6,785 research outputs found

    Subsonic longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration having spanwise leading-edge vortex enhancement

    Get PDF
    A configuration which integrates a close coupled canard wing combination, spanwise blowing for enhancement of the wing leading edge vortex, an engine-over-wing concept, and a wing trailing edge coanda-effect flap is studied. The data on the configuration are presented in tabular from without discussion. The investigation was conducted in the Langley 7- by 10-foot high speed tunnel at a Mach number of 0.166 through an angle-of-attack range from -2 to 22 deg. Rectangular main engine nozzles of aspect ratio 4, 6, and 8 were tested over a momentum coefficient range from 1.0 to 1.8

    The Omission of Important Incidents from Shakespeare\u27s Historical Plays

    Get PDF

    Subsonic longitudinal aerodynamic characteristics and engine pressure distributions for an aircraft with an integrated scramjet designed for Mach 6 cruise

    Get PDF
    A 1/10-scale model of a proposed hypersonic aircraft with an integrated scramjet was tested. The investigation took place over a Mach number range from 0.2 to 0.7 and an angle of attack range from 2 deg to approximately 17 deg at a sideslip angle of 0 deg. The primary configuration variables studied were engine location, internal engine geometry, and external engine geometry. The results are presented without analysis

    Experimental study of wing leading-edge devices for improved maneuver performance of a supercritical maneuvering fighter configuration

    Get PDF
    Wind tunnel tests were conducted to examine the use of wing leading-edge devices for improved subsonic and transonic maneuver performance. These devices were tested on a fighter configuration which utilized supercritical-wing technology. The configuration had a leading-edge sweep of 45 deg and an aspect ratio of 3.28. The tests were conducted at Mach numbers of 0.60 and 0.85 with angles of attack from -0.5 deg to 22 deg. At both Mach numbers, sharp leading-edge flaps produced vortices which greatly altered the flow pattern on the wing and resulted in substantial reductions in drag at high lift. Underwing or pylon-type vortex generators also reduced drag at high lift. The vortex generators worked better at a Mach number of 0.60. The vortex generators gave the best overall results with zero toe-in angle and when mounted on either the outboard part of the wing or at both an outboard location and halfway out the semispan. Both the flaps and the vortex generators had a minor effect on the pitching moment. Fluorescent minitufts were found to be useful for flow visualization at transonic maneuver conditions

    High efficiency thermionic converter studies

    Get PDF
    The objective is to improve thermionic converter performance by means of reduced interelectrode losses, greater emitter capabilities, and lower collector work functions until the converter performance level is suitable for out-of-core space reactors and radioisotope generators. Electrode screening experiments have identified several promising collector materials. Back emission work function measurements of a ZnO collector in a thermionic diode have given values less than 1.3 eV. Diode tests were conducted over the range of temperatures of interest for space power applications. Enhanced mode converter experiments have included triodes operated in both the surface ionization and plasmatron modes. Pulsed triodes were studied as a function of pulse length, pulse potential, inert gas fill pressure, cesium pressure, spacing, emitter temperature and collector temperature. Current amplifications (i.e., mean output current/mean grid current) of several hundred were observed up to output current densities of one amp/sq cm. These data correspond to an equivalent arc drop less than 0.1 eV

    The effect of canard relative size and vertical location on the subsonic longitudinal and lateral-directional static aerodynamic characteristics for a model with a swept forward wing

    Get PDF
    A general research fighter model was tested in the Langley 7- by 10-foot high speed tunnel at a Mach number of 0.3. The model was tested with a 32 deg swept forward wing mounted in mid-, low-, and high-wing positions. For the mid-wing configuration, the model was tested with a 51.7 deg swept back canard mounted in mid-, low-, and high-canard positions. For the mid-wing mid-canard and the mid-wing high-canard configurations, canards of similar planform having two different areas were tested. The angle-of-attack range was from approximately -4 deg to 48 deg at sideslip angles of 0 deg, -5 deg, and 5 deg

    Lossy data compression with random gates

    Full text link
    We introduce a new protocol for a lossy data compression algorithm which is based on constraint satisfaction gates. We show that the theoretical capacity of algorithms built from standard parity-check gates converges exponentially fast to the Shannon's bound when the number of variables seen by each gate increases. We then generalize this approach by introducing random gates. They have theoretical performances nearly as good as parity checks, but they offer the great advantage that the encoding can be done in linear time using the Survey Inspired Decimation algorithm, a powerful algorithm for constraint satisfaction problems derived from statistical physics

    Subsonic longitudinal and lateral-directional static aerodynamic characteristics for a close-coupled wing-canard model in both swept back and swept forward configurations

    Get PDF
    A general research fighter model was tested in the Langley 7 by 10-foot high speed tunnel at a Mach number of 0.3. The close-coupled wing-canard combination was tested with both lifting surfaces in a 60 deg swept back configuration and in a 32 deg swept forward configuration. The angle-of-attack range was from approximately -4 deg to 48 deg at sideslip angles of zero deg, -5 deg. The data is presented without analysis in order to expedite publication

    Subsonic longitudinal and lateral-directional static aerodynamic characteristics of a general research fighter configuration employing a jet sheet vortex generator

    Get PDF
    A configuration concept for developing vortex lift, which replaces the physical wing strake with a jet sheet generated fluid strake, was investigated on a general research fighter model. The vertical and horizontal location of the jet sheet with respect to the wing leading edge was studied over a momentum coefficient range from 0 to 0.24 in the Langley 7- by 10-foot high speed tunnel over a Mach number range from 0.3 to 0.8. The angle of attack range studied was from -2 to 30 deg at sideslip angles of 0, -5, and 5 deg. Test data are presented without analysis

    High efficiency thermionic converter studies

    Get PDF
    Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion
    • …
    corecore