NASA Technical Memorandum 74092

SUBSONIC LONGITUDINAL AND LATERAL-DIRECTIONAL STATIC AERODYNAMIC CHARACTERISTICS FOR A CLOSE-COUPLED WINGCANARD MODEL IN BOTH SWEPT BACK AND SWEPT FORWARD CONFIGURATIONS

Jarrett K. Huffman and Charles H. Fox, Jr.

1978

Natıonal Aeronautics and Space Adminustration

A general research fighter model was tested in the Langley 7- by 10-foot high speed tunnel at a Mach number of 0.3 . The close-coupled wing-canard combination was tested with both lifting surfaces in a 60° swept back configuration and in a 32° swept forvard configuration. The angle of attack range was from approximately -4° to 48° at sideslip angles of $0^{\circ},-5^{\circ}$, and 5°. The data are presented without analysis in order to expedite publication.

In the late 1940^{\prime} s, as aircraft speeds were approaching Mach one, investigations were conducted to evaluate swept forward and swept back wings as a means of delaying the onset of transonic compressibility effects. (See references 1-3). Sweeping the wings, either forward or back, delayed the drag rise to a higher Mach number; however, an aeroelastic divergence problem was found to be associated with swept forward wings. (See references 4 and 5.) This structural instability problem could be eliminated, but the resulting swept forward wing was significantly heavier than a corresponding swept back wing. As a consequence of this fact, most of the subsequent research was concentrated on swept back wings.

Recently, research interest in forward sweep has been renewed. This is partly a result of studies, such as reference 6 , which indicate that proper tailoring of composite materials can produce a swept forward wing with minimal weight penalty. Forward sweep is being studied in relation to a variety of configurations. When applied to fighter aircraft, the forward sweep concept offers the potential for improved subsonic and supersonic cruise performance as well as improved transonic maneuver performance.

Experimental studies have been initiated to expand the existing data base on swept forward wings. (See reference 7.) The present study was conducted to obtain the static aerodynamic characteristics of a close coupled wing-canard model with both swept back and swept forward wing and canard surfaces.

It should be noted that the models were built up from wing and canard model parts previously constmicted for siwept back configurations. These liftíng surfaces had circular ár áirfoil sections which ailowed their use in the reversed or forward sweep condition. It should be. also noted that; because of the fiow separation at the sharp leading edges, the present data will be generally more applicable to the . study of the high angle-of-attack characteristics.

The tests were performed in the Langley 7- by l0-foot high speed tunnel at a Mach number of 0:3. The angle-of-attack range was from approximately -4° to 48° at sideslip angies of $0^{\circ} ;-5^{\circ}$, and 5°.

The International System of Units, with the U.S. Customary Units presented in parenthesis, is used for the physical quentities in this report (See reference 8). The measurements and calculations were made in the U.S. Customary Units. The data presented in this report are referred to the stability axis system. The reference center for moments is shown in Figure $1(a)$.
b wing reference span, . 508 m (20.000 in.)
-- wing reference chord, . 233 m (9.185 in.)
C_{D} total drag coefficient, $\frac{\text { Drag }}{q S}$.
. $C_{D_{2}}$ nose drag coefficient
$C_{I} \quad$ total lift coefficient, $\frac{\text { Lift }}{q S}$
$\mathrm{C}_{\mathrm{I}_{2}}$ nose lift coefficient
$C_{\ell} \quad$ total rolling moment coefficient, $\frac{\text { Rolling moment }}{q S b}$
C_{ℓ} nose rolling moment coefficient
$C_{\ell_{\beta}}$ beta derivative of total rolling moment coefficient computed between $\beta=5^{\circ}$ and $\beta=-5^{\circ}$.
${ }^{C_{\ell_{2}}}$ beta derivative of nose rolling moment coefficient computed between $\beta=5^{\circ}$ and $\beta=-5^{\circ}$


```
    'C}\mp@subsup{m}{2}{}\mathrm{ nose pitching moment 
    C total yawing moment coefficient, \frac{Yawing,moment}{qSb}
    C n
C [n
        between }\beta=\mp@subsup{5}{}{\circ}\mathrm{ and }\beta=-\mp@subsup{5}{}{\circ
    C [n_\mp@subsup{B}{2}{}
        \beta
        between }\beta=\mp@subsup{5}{}{\circ}\mathrm{ and }\beta=-\mp@subsup{5}{}{\circ
    CY total side force coefficient, Síde force
    C C
    .}\mp@subsup{}{}{\cdot}\mp@subsup{C}{Y}{
    C}\mp@subsup{Y}{B}{}\mathrm{ beta derivative of nose side force coefficient computed between
        \beta=5%}\mathrm{ and }\beta=-\mp@subsup{5}{}{\circ
    M free stream Mach number
    q Iree stream dynamic pressure, Pa (Ib/ft2)
    S wing reference area,.1032 m
    \alpha angle of attack of the model, degrees
    \mp@subsup{\alpha}{2}{}}\mathrm{ angle of attack of the fuselage nose, degrees
```

B angle of sideslip of the model, degrees
$\beta_{2} \quad$ angle of sideslip of the fuselage nose, degrees
$\Lambda_{w} \quad$ leading edge sweep angle of the wing, degrees
$\Lambda_{c} \quad$ leading edge sweep angle of the canard, degrees

Model

B body
C canard
V vertical tail
W wing

Drawings of the model tested are presented in Figure 1. Photographs of the model installed in the $7-$ by $10-f$ foot high speed tunnel are presented in Figure 2.' The basic model consisted of a main fuselage with a vertical tail and a wing and a fuselage nose with a canard. The main fuselage was sting mounted on a six-component strain gage main balance which measured the total forces and moments on the configuration. The fuselage nose section was mounted on a six component strain gage nose balance which measured only the forces and moments on the nose and canard. The metric break is shown in figure 1.

The uncambered and untwisted wing, canard and vertical tail employed circular arc airfoil sections with a thickness ratio of 6% at the fuselage juncture and 4% at the tip. The wing and canard had one edge with a nominal sweep of 60° and one edge with a nominal sweep of 32° (See Figures $I(a)-I(d))$. The wing and canard could be set up with the leading edge swept back 60° or with the leading edge swept forward 32°. The exposed area of the canard was 15.9 percent of the wing reference area. The centerline mounted vertical tail, which is shown in Figure I(e), had an exposed area of 14 percent of the wing reference area.

APPARATUS, TESTS, AND CORRECTIONS

The investigation was conducted in the Langley 7- by I0-foot high speed tunnel (See reference 9). Forces and moments were measured
on two six component strain gage balances mounted internally in the model. The test was run at a Mach number of 0.3 corresponding to a Reynolds number of 1.4×10^{6} based on the wing reference chord. The model was tested over an angle of attack range from -4° to approximately 48° at sideslip angles of 0°, and $\pm 5^{\circ}$. The angles of attack and sideslip have been corrected for the effects of sting and balance bending under load. It should be noted that the sting support system which permits testing over this large angle range is designed specifically for stability testing. Therefore the level of the drag data is questionable for use in performance analysis.

Jet boundary and blockage corrections have been applied to the data based on references 10 and 11 , respectively. The main balance chamber pressure was measured and the total drag measurements were adjusted to a condition of free stream static pressure acting over the base of the model. The nose balance base and chamber pressure were also measured and the nose drag measurements were adjusted to. a condition of free stream static pressure acting at the base of the nose. Transition strips $0.16 \mathrm{~cm}(.0625$ in.) in width of No. 120 Carborundum grams were placed $2.54 \mathrm{~cm}(1.0 \mathrm{in}$.$) aft of the leading edge of the wings, canards,$ and vertical tail as well as 3.05 cm (1.2 in.) aft of the nose of the fuselage (reference 12).

The results are presented without analysis in order to expedite publication. Figure 3 presents surface oil flow photographs.

The longitudinal and lateral-directional aerodynamic characteristics at 0° sideslip are presented in the following figures:
Figure
.Swept back configuration:
Vertical tail on 4
Vertical tail off 5
Swept forward configuration:
Vertical tail on 6
Vertical tail off 7
The lateral-directional aerodynamic stability derivative
characteristics are presented in the following figures:
Swept back configuration:
Vertical tail on 8
Vertical tail off 9
Swept forward configuration:
Vertical tail on 10
Vertical tail offf 11
I. Wright, J. B., and Loving, D. L., High Speed Wind Tunnel Tests of 1/16-Scale Model of the D-558 Research Airplane, NACA RM L6J09 1947.
2. Whitcomb, R. T., Ar Experimental Study at Moderate and Figh Subsonic Speeds of the Flow over Wings with 30° and 45° of Sweep-Forward in Conjunction with a Fuselage, NACA RM L50K28, 1950.
3. Whitcomb; R. T., An Experimental Study at Moderate and High Subsonic Speeds of the Flow over Wings with 30° and 45° of Sweep-Back in Conjunction with a Fuselage, INACA RM L50K27, 1951.
4. Diederick, F. W.; and Budiansky, B.: Divergence of Swept Wings , ACA Technical Note 1680, 1948.
5. Bisplinghoff, R. L.; and Ashley, H.: Principles of Aeroelasticity, John Wiley and Sons, Inc., New York, 1962.
6. Krone, N. J., Lt. CoI., Divergence Elimination with Advanced Composites, AIAA Paper No. 75-1009, Aircraft Systems and Technology Meeting, Los Angeles, Califormia, August 1975.
7. Huffman, Jarrett K., and Fox, Charles H., Jr.: Subsonic Longitudinal and Lateral-Directional Static Aerodynamic Characteristics for a Model with Swept Back and Swept Forward Wings. NASA TM-74093, 1978.
8. Mechtly, E. A.: The International System of Units. NASA SP-7012, 1964.
9. Fox, Charles H., Jr., and Huffman, Jarrett K.: Calibration and

Test Capabilities of the Langley 7-by io-foot High Speed
Tunnel. NASA TM X-74027, 1977.
10. Gillis, Clarence L.; Polhamus, Edward C., and Gray, Joseph L., Jr.:

Charts for Determining Jet-Boundary Corrections for Complete
Models in 7- by lo-foot Closed Rectanguilar Wing Tunnels. NACA WR-L-123, 1945.
11. Herriott, John G.: Blockage Corrections for Three-DimensionalFlow Closed-Throat Wind Tunnels, with Consideration of the Effect of Compressibility. NACA Report 995, 1950.
12. Braslow, Albert L.; Hicks, Raymond M.; and Harris, Roy V., Jr.: Use of Grit-type Boundary-Layer Transition Trips on Wind Tunnel Models. NASA TN D-3579, 1966.

Figure 1. Drawings of the model tested. All dimensions are normalized by a fuselage length of 0.96589 m . ($38,027 \mathrm{in}$.)

(b) Details of the swept back wing.
.Fgure 1. Continued.

(c) Details of the swept forward wing.

Figure 1. Continued,

(d) Details of the swept back and swept forward canards.

Figure 1. Continued.

Figure 2. - Photographs of the model installed in the Langley 7 - by 10 -foot high speed tunnel.

Figure 1. Concluded.

(a) $\alpha=15^{\circ}, \Lambda_{w}=60^{\circ}$, plan view.

Figure 3.- Surface oil flow photographs. $\quad M=0.3$.
' RIGINAL PAGE IS
\because POOR QUALITY

Figure 3.- Continued.

Figure 3. - Continued.

Fiqure 3. - Continued.
(f) $\alpha=30^{\circ}, \Lambda_{W}=60^{\circ}, \Lambda_{C}=60^{\circ}$, plan view.

Figure 3.- Continued.

ORIGINAL PAGE IS OF POOR QUALITY.

Figure 3.- Continued.

Figure 3.- Continued.

Figure 3.- Continued.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.- Continued.

Fiqure 3. - Concluded.

(a) Main balance longritudinal data

Fig
Figure 4. Aemdynamic charaderistics of the swept back configuration with the vertical tation. $M=0.3, \beta=0^{0}$.

(b) Mose balance longitudinal data

Figure 4. Continued.

- (c) Maln balance lateral-directlonal data Figure 4 Continued.

ORIGINAL PAGE IS
OF POOR QUALITY

(d) Nose balance lateral-directional data

Figure 4 concluded.

Figure 5. Continued.
ORIGINAL PAGE IS
OF POOR QUALITY

(a) Main balance longitudinal data

Figure 6. Aerodynamic characteristics of the swept forward configuration with the vertical tall on. $M=0.3, \beta^{\sim} 0^{0}$.

(b) Nose balence longitudinal data

- Figure 6 . contlinued

ORIGINAL PAGE IS OF POOR QUALITY

(d) Hose balance Ialeral-directional data

Figure 6 . concluded.

ORIGINAL PAGE IS OF POOR QUAIITY

(a) Main balance Tongitudinal data

Figure 7. Aerodynamic characteristics of the swept forward configuration with the vertical tail off. $M=0.3, \beta=0^{\circ}$.

(a) Main batance data.

Figure B. - Lateral-directional aerodynamic stability derivative characteristics of the swept back conflguration with vertical tall on. $M=0.3$.

ORIGINAL PAGE IS
OF POOR QUALITY'

(a) MaIn balante data

Figure 9. - Lateral-directional aerodynamlc staifily derlvative characteristics of the swept back conifguration with vertlcal tall off. $M=0.3$.

(9) Nose bafance data.

Flgure 9. - Conciuded.

a) Maln bafance data.

Figure 10، - Laterai-difectional aerodynamic stablity derfvallve characteristics of the swept forward conflguration with vertical tall on. $\mathrm{M}=0.3$.

(b) Nose balance mata.

Figure 10. - Concluded.

(a) Main balance data.

Flgure li. - Lateral-difrecilonal aerodynamic stablity derivative characterlstics of the swept forward conflguration wilh vertical fall off. $M=0.3$

(b) Nose balance data.

Flgure 11 - Concluded.

* For sale by the Natıonal Technical Informatıon Service. Springfield Virgına 22161

