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INTRODUCTION

In the late 19h0's, as aircraft speeds were approaching Mach one,

investigations were conducted to evaluate swept forward and swept back wings

as a means of delaying the onset of transonic compressibility effects.

(See references 1-3). Sweeping the wings, either forward or back, delayed

the drag rise to a higher Mach number; however, an aeroelastic divergence

problem was found to be associated with swept forward wings. (See

references 4 and 5.) This structural instability problem could be

eliminated, but the resulting swept forward wing was significantly heavier

than a corresponding swept back wing. As a consequence of this fact,

most of the subsequent research was concentrated on swept back wings.

Recently, research interest in forward sweep has been renewed. This

is partly a result of studies, such as reference 6, which indicate that

proper tailoring of composite materials may produce a divergence-free swept

forward wing with minimal weight penalty. Forward sweep is being studied in

relation to a variety of configurations. When applied to fighter air-

craft, the forward sweep concept offers a possible potential for improved

transonic maneuver performance.

Experimental studies have been initiated to expand the existing data

base on swept forward wings. (See references 7 and 8.) The present study

was conducted to obtain the effect on static aerodynamic characteristics of

• the relative size and vertical location of a swept back canard in combination

with a swept forward wing.
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It should be noted that the model was built up from wing and

canard model parts previously constructed for swept back configurations.

These lifting surfaces had circular arc airfoil sections which allowed

their use in the reversed or forward sweep condition. It should be also

noted that, because of the flow separation at the sharp leading edges, the
D

present data will be generally more applicable to the study of the high

angle-of-attack characteristics.

The tests were performed in the Langley 7- by lO-foot high speed

tunnel at a Mach number of O.B. The angle-of-attack range was from

approximately-4 ° to 48° at sideslip angles of 00, -5° , and 5°.

q
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SYMBOLS

The International System of Units, with the U.S. Customary Units

presented in parenthesis, is used for the physical quantities in this

report (See reference 9). The measurements and calculations were made

in the U.S. Customary Units. The data presented in this report are

refer_ed to the stability axis system. The reference center for):

moments is shown in Figure l(a).

b wing reference span, .508 m (20.000 in.)

wing reference chord, .233 m (9.185 in.)

Total Dra5
CD total drag coefficient, qS

CD2 nose drag coefficient, NOSeqsDrag

Total Lift
CL total lift coefficient, qS

Nose Lift

CL2 nose lift coefficient, qS

Total Rollin_ moment
C£ total rolling moment coefficient, qSb

Nose Rolling moment

C£2 nose rolling moment coefficient, qSb

C£8 beta derivative of total rolling moment coefficient computed
between 8 = 5° and 8 = -5°•

. C£ beta derivative of nose rolling moment coefficient computed
B2

between 8 = 5° and B = -5° •
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Total Pitchin6 moment
C total pitching moment coefficient,
m qS_

Nose Pitchin5 moment
C nose pitching moment coefficient,
m2 qS_

Total Yawin5 moment
Cn total yawing moment coefficient, qSb

NoseYawin5 moment

Cn2 nose yawing moment coefficient,
qSb

C beta derivative of total yawing moment coefficient computed

nB

between 8 = 5° and 8 = -5 °

Total Side force
Cy total side force coefficient, qS

Nose Side force

CY2 nose side force coefficient, qS

Cy8 beta derivative of total side force coefficient computed

between 8 = 5° and 8 = -5°

• _ .

Cy beta d_rlvatlve of nose side force coefficient computed between

82
8 = 5° and 8 = -5°

M free stream Mach number

q free stream dynamic pressure, Pa (lb/ft 2)

S wing reference area, .1032 m2 (1.11109 ft2)

angle of attack of the model, degrees

_2 angle of attack of the fuselage nose, degrees

8 angle of sideslip of the model, degrees

82 angle of sideslip of the fuselage nose, degrees



DESCRIPTION OF MODEL

Drawings of the model tested are presented in Figure i. Photographs

of the model installed in the 7- by 10-foot high speed tunnel are pre-

sented in Figure 2. The basic model consisted of a main fuselage with

a vertical tail and a wing and a fuselage nose with a canard. The main

fuselage was sting mounted on a six-component strain gage main balance

which measured the total forces and moments on the configuration. The

fuselage nose section was mounted on a six component strain gage nose

balance which measured only the forces and moments on the nose and canard.

The metric break is shown in figure 1.

The uncambered and untwisted wing, canard, and vertical tail employed

circular arc airfoil sections with a thickness ratio of 6 percent at the

fuselage juncture and 4 percent at the tip. The wing had a sharp leading

edge with a nominal forward sweep of 32°. (See figure l(d)). Figure l(a)

shows the high-, mid, and low-wing positions. The fuselage was modified

to a locally rectangular upper or lower section for the high- or low-wing

positions so that the span was equal to the mid-wing span. The canards had

sharp leading edges with a nominal aft sweep of 51.7°. (See Figure l(e)).

Figure l(b) shows the high-, mid-, and low-canard positions of the medium

size canard and the high position of the large size canard. The fuselage was

modified to a locally rectangular upper or lower section for the high- or low-

canard positions so that the span was equal to the mid-canard span. Figure

l(c) shows the mid position of the medium and small size canards. The exposed

areas of the canards were 15.8, 22.2, and 28.7 percent of the wing reference

area. The centerline mounted vertical tail had a 51.7° swept sharp leading

edge and had an exposed area of 14 percent of the wing reference area. (See

Figure l(f)).
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APPARATUS,TESTS,AND CORRECTIONS

The investigation was conducted in the Langley 7- by 10-foot high

speed tunnel in the solid wall test section configuration (See reference lO).

Forces and moments were measured on two six component strain gage balances

mounted internally in the model. The test was run at a Mach numberof 0.3

corresponding to a Reynolds number of 1.h x lO6 based on the wing reference

chord. The model was tested over an angle of attack range from -he to

approximately 48° at sideslip angles of 0° , and +5°. The angles of attack

and sideslip have been corrected for the effects of sting and balance

bending under load. It should be noted that the sting support system which

permits testing over this large angle range is designed specifically for

stability testing. This sting mechanism incorporates a large structure

downstream of the model (see fig. 2). It is felt that this large body

behind the model may cause a change in the pressure on the outer lines

of the aft fuselage. Therefore the level of the drag data may be questionable

for use in performance analysis.

Jet boundary and blockage corrections have been applied to the

data based on references ll and 12, respectively. The main balance

chamber pressure was measured and the total drag measurements were

adjusted to a condition of free-stream static pressure acting over the

base of the model. The nose balance base and chamber pressure were also

measured and the nose drag measurements were adjusted to a condition

of free stream static pressure acting at the base of the nose. Transition

strips 0.16 cm (.0625 in.) in width of No. 120 Carborundum grains were

placed 2.54 cm (1.0 in.) aft of the leading edge of the wings, canards,

and vertical tail as well as 3.05 cm (1.2 in.) aft of the nose of the

fuselage (reference 13).
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PRESENTATION OF RESULTS

The longitudinal and lateral-directional aerodynamic characteristics

at 0° sideslip are presented in the following figures:

Figure

Effect of wing height 3

- Effect of canard height

Effect of component breakdown with low canard 5

Effect of component breakdown with high canard 6

Effect of Mid-canard size 7

Effect of High-canard size 8

Lift interference effect for the high and low

canard position 22

The lateral-directional aerodynamic stability derivative characteris'

tics are presented in the following figures:

Figure

Effect of wing height 9

Effect of canard height l0

Effect of component breakdown with low canard ll

Effect of component breakdown with high canard 12

Effect of mid-canard size 13
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Surface oil flow photographs at 0° sideslip are presented in the

following figures:

Figure

Basic mid-wing 14

Basic high-wing 15

Basic low-wing 16

Basic medium size high-canard 17

Basic medium size low-canard 18

Mid-wing small size mid-canard 19

Mid-wing large size high-canard 20

Mid-wing large size low-canard 21

Note that no force measurements were obtained on the configuration pre-

sented in figure 21.
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DISCUSSION

The fuselage used for this investigation was designed to allow

versatility in model geometry and is used in a number of general research

programs. Therefore, this fuselage does not represent the fuselage of an

actual high performance aircraft. Also the wing, horizontal and vertical

tails have biconvex airfoil sections with sharp leading and trailing edges

which would be expected to result in leading edge separation at relatively

low angles of attack. The data, however should be of interest with regard

to component interference effects particularly in the high angle of attack

range encountered by maneuvering aircraft.

Longitudinal and Lateral-Directional Characteristics

The effect of wing vertical location on the aerodynamic characteristics

is shown in figure 3. The data indicate that only above 30 degrees angle

of attack is there any appreciable effect and these effects are limited to the

high-wing location configuration. The noted effects may be caused by the

juncture of the wing and fuselage (see oil flow pictures, Figures 14, 15,

and 16). The data along with the oil flow information show that because

of the sharp leading edge, separation along the leading edge is generally

independent of wing vertical location.

Figure 4 shows the effect of medium-size canard vertical location

on the aerodynamic characteristics of the configuration utilizing the mid-

- wing location. The data show that the canard in the high position produces

the maximum canard lift (see Figure 4(b)) and has a more linear pitching

moment coefficient versus angle of attack. These effects are seen also in the

total aerodynamic characteristics of the configuration (see figure 4(a)) as
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higher total lift and more linear pitching moment. The loss in lift of the

canard in the low position is most probably caused by the reduced

body induced upwash and a los_of c_rry-oyerlift on the body.

The effect of model component on the aerodynamic characteristics

for the low- and high-canard position utilizing the mid-wing location

configuration are shown in Figure 5 and 6, respectively, and summarized

in Figure 22 as interference effects. The data in Figure 22 show that the

canard lift increment for the high canard in the presence of the wing is

considerably larger than that for the low canard. However, both canard

positions exhibited adverse effects on the wing and after-body lift at low

angle of attack which diminished at high angles. Favorable interference

effects of the wing on the high canard are noted, but in general,

no favorable effects were noted for the low canard. These general

trends were also reported in reference 14 for a configuration utilizing

a swept-back wing and a swept-back canard. The absence of favorable

interference effects of the wing on the low canard may be caused by forebody

interference effects as indicated by the early stall of the canard-body

alone configuration (see Figure 22). The oil flow data of Figures 14, 18,

20, and 21 indicate these trends.

Figure 7 shows the effect of canard size on the aerodynamic charac-

teristics of the configuration utilizing the mid-canard location and mid-

wing location. The data, as would be expected, show the large canard

producing the larger lift increment and the more unstable longitudinal
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moment. However, from the preceding discussion and data of reference 14

it appears that the interference effect of the canard on the wing

is generally small and therefore, the lift interference increment noted is that

due to increased area and favorable interference of the wing on the canard

(see oil flow data, Figure 19).

Figure 8 shows the effect of the canard size on the aerodynamic

characteristics of the configuration utilizing the mid-wing and the high-

canard location. These data show the same basic trends as the data for

the mid-canard location. It should be noted at this point that for the

test configuration the low position for the canard indicated no favorable

intereference effect.

Lateral-Directional Stabili%yDerivatives

The effect of wing height on the lateral-directional characteristics

of the wing-body configuration is shown in Figure 9. The data show that

for the high-wing location the vertical tail produces a stabilizing incre-

ment in C , up to the highest test angle-of-attack, while the mid- and
n_

low-wing location exhibited a destabilizing increment in the high angle-of-attack

range. In all cases the increment is altered by an adverse flow field and

decreases with increasing angle of attack. A possible cause of this altered

flow field is a combination of wing wake and forebodyvortex. Above

about 14 degrees angle of attack, addition of the vertical tail results

in a destabilizing effect on the effective dihedral parameter (C18).
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Figure i0 shows the effect of the vertical height of the medium-

size canard on the lateral-directional characteristics of the configura-

tion utilizing the mid-wing location. The data show a markedly lower C
nB

for the high-canard configuration and no significant improvement in the

vertical tail effectiveness as the canard moves from the high to low

position, other than a slight increase in the angle of attack before

instability occurs. For all canard heights tested, the effect of the

vertical tail on C was destabilizing between 12 and 18 degrees

angle of attack.

Figure ii shows the effect of the vertical tail on the mid-wing

configuration with and without the medium size canard located in the low

position. The data indicates that addition of the canard caused a small

increase in the vertical tail effectiveness up to approximately 20° angle of

attack, and a marked decrease at higher angles. Also, the canard contribution Co

is destabilizing at high angles-of-attack. This effect may be caused by the canard
B

vortex system changing the sidewash angle of the vertical tail, as well as the

canard downwash altering the wing wake in the region of the vertical tail.

This can also be seen by the reversal in CyB.

Figure 12 shows the effect of the vertical tail on the mid-wing

configuration with and without the medium size canard in the high position.

The data show the same trends as for the low position data. However,

directional instability occurs at a lower angle of attack.

Figure 13 shows the effect of the vertical tail on the mid-wing and

mid-canard configuration for the small and medium size canards. The
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data show that, as the canard size increases, the vertical tail effectiveness

decreases. This appears to indicate that the downwash from the canard is

indeed altering the wing wake in the region of the vertical tail along with

the canard vortex system altering the sidewash angle of the vertical tail.

This is also indicated by the Cy8 reversal at about the same angle of attack

at which the effectiveness becomes zero. The CI_ was not effected by

canard size.

SUMMARYOF RESULTS

A study to determine the effect on the static aerodynamic charac-

teristics of the relative size and vertical location of a swept back canard

in combination with a swept forward wing as well as the effect of the

vertical location of the wing on the wing body characteristics yields

the following results:

1. With the canard off, varying the wing vertical location results

in no appreciable effect on the longitudinal aerodynamic charac-

teristics except for the high wing location above about 30°

angle of attack.

2. No canard vertical location or canard size tested showed a

favorable lift interference effect of the canard on the

wing. However, the high-canard location indicated a

sizeable favorable lift intereference effect of the wing on the

canard, while the low canard location generally showed no

- effect.

3. With the canard off, the vertical tail produced a stabilizing

increment in directional stability up to the highest angle of

attack tested for the high wing configuration; while the mid-
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and low-wing configurations exhibited negative directional

stability at substantially lower angles of attack.

4. Addition of the canard to the mid-wing configuration reduced the

directional stability and resulted in lower angles of attack for

onset of directional instability.

5. For the configuration with the mid-wing and the medium-size canard,

no significant improvement in directional stability occurred as

the canard was moved from the high to the low position, other than

a slight increase in the angle of attack for onset of instability.

6. As the canard size increased, directional instability occurred

at a lower angle of attack.
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(a) Basic mid-wi'ng configuration
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(a)a=3°, planview
Figure14.-Surfaceoi! flow photographsof the basicmid-wingconfiguration. M=0.3.



(b) a=7°, plan view
Figure 14. - Continued.



(c)a--15°, planview

Figure 14.-Continuedo



(d)a---30°, planview
Figure 14.-Concluded.



(a)a--3°, planview
Figure15.-Surfaceoil flow photographsof the basichigh-wing configuration. M--0.3.



!'b)ao7°, planview
Figure15._Continued_
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(c)a--15,planview

Figure15.-Continued.



{d}a=25°, planview
Figure15_-Continued°



(e)a=40°, planview
Figure15.-Concluded:



(a) 0=30
, plan view

, Ffgu re 16. - Surface oirflow photographs o the basic low-wing configuration



(b)a=7°, planview
Figure 15.- Continued.
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Figure 16. - Continued.



(d)a=25°, planview
Figure 16.-Continued,



(e)a=40°, planview
Figure!6.- Concluded.



(a)a--3°, planview

Figure17.-Surfaceoil flowphotographsofthe:basicmedium
sizelow-canardconfiguration.M=O.3.
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(b) a=3°, side
Figu re 17" - Conti nue<l.



(c) (_=25°, planview
Figure17.-Continued.



(d) 0=25°, side view
Figure r7. - Continued.



(e)a=40°, planview

Figure 17. - Continued.



(f)a=400. side view
Figu re 17.... Concluded.
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(a)a--3°, planview
Figure18.-Surfaceoil flow photographsof the basic
mediurnsize high-canardconfiguration. M--Oo3.



(b) a;;::30, sideview
;tigu,re r8. -Continued.



(c)a=25°, planview
Figure 18.- Continued.



'(d) 0=2,Ot side view
Figu re 18. - conti nued.



(e)a--40°, planview
Figure18,-Continued.
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Figure 18.... Concluded.
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(a)a=3°, planview

Figure 19. - Surfaceoil flowphotographsof the mid_ing

. small size mid-canardconfiguration°M=0.3.
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(.b)a=3o, sideview
Figure 19. - Continued,



(c)a=25°, planview
Figure 19.- Continued,



(dl a=2501 side view
Figure 19.. 8 Continued. "



(e)a=40°, planview
Figure 19.- Continued.
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Figu re 19.. .,. Concluded..



(a)a--3°,planview

Figure20.- Surfaceoil flow photographsof the mid-wing
. largesizehigh-canardconfiguration. M--0.3.
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(b) 0;;3°, side view·
.. Figu re.20.... Continued.



(c)Q=25°, planview
Figure20.-Continued.
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(d)a= , :sideview
Figure20°-Continued,



(e) , planview
Figure20.-Continued.



{ftao4o°;:sideview
Figure 20.-Concluded.



(a)a=3°, planview
Figure21.-Surfaceoil flowphotographsof the mid-wing

- large size low-canardconfiguration. M=0.3.



(b) 0=3°. side view
Figure 21. - Continued.



r

I ~
I •

(c) 0=25°, plan view
Figure 21. - Continued.



(d) 0=25°, side view
Figu re 21. - Continued"



(e) a=400. pran view
Figu re 21. - Continued.



(f}a=40°, sideview "
Figure21o-Concluded,
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