3,322 research outputs found

    Automatic Detection of Outliers in Multibeam Echo Sounding Data

    Get PDF
    The data volumes produced by new generation multibeam systems are very large, especially for shallow water systems. Results from recent multibeam surveys indicate that the ratio of the field survey time, to the time used in interactive editing through graphical editing tools, is about 1:1. An important reason for the large amount of processing time is that users subjectively decide which soundings are outliers. There is an apparent need for an automated approach for detecting outliers that would reduce the extensive labor and obtain consistent results from the multibeam data cleaning process, independent of the individual that has processed the data. The proposed automated algorithm for cleaning multibeam soundings was tested using the SAX-99 (Destin FL) multibeam survey data [2]. Eight days of survey data (6.9 Gigabyte) were cleaned in 2.5 hours on an SGI platform. A comparison of the automatically cleaned data with the subjective, interactively cleaned data indicates that the proposed method is, if not better, at least equivalent to interactive editing as used on the SAX-99 multibeam data. Furthermore, the ratio of acquisition to processing time is considerably improved since the time required for cleaning the data was decreased from 192 hours to 2.5 hours (an improvement by a factor of 77)

    Nonlinearity and pixel shifting effects in HXRG infrared detectors

    Get PDF
    We study the nonlinearity (NL) in the conversion from charge to voltage in infrared detectors (HXRG) for use in precision astronomy. We present laboratory measurements of the NL function of a H2RG detector and discuss the accuracy to which it would need to be calibrated in future space missions to perform cosmological measurements through the weak gravitational lensing technique. In addition, we present an analysis of archival data from the infrared H1RG detector of the Wide Field Camera 3 in the Hubble Space Telescope that provides evidence consistent with the existence of a sensor effect analogous to the brighter-fatter effect found in Charge-Coupled Devices. We propose a model in which this effect could be understood as shifts in the effective pixel boundaries, and discuss prospects of laboratory measurements to fully characterize this effect.Comment: Accepted for publication in the Journal of Instrumentation (JINST). Part of "Precision Astronomy with Fully Depleted CCDs" (Dec 1-2, 2016), Brookhaven National Laboratory, Upton, NY, US

    Resolving the Ripples (and a Mine): High-Resolution Multibeam Survey of Martha\u27s Vineyard ONR Mine Burial Program Field Area

    Get PDF
    In an effort to better understand the coastal processes responsible for the burial and exposure of small objects on the seafloor, the Office of Naval Research is sponsoring the Mine Burial Program. Among the field areas chosen for this program is the site of the Martha\u27s Vineyard Coastal Observatory (MVCO), a permanent instrumented node in 12 m of water about 500 m off the southern shore of Martha?s Vineyard. In support of the ONR program, several site surveys of the MVCO area have been conducted (see Goff et al); here we report the result of the most recent of these surveys, a very high-resolution multibeam survey aimed at establishing a detailed base map for the region and providing a baseline from which subsequent surveys can measure seafloor change In late July we conducted a five day survey of an approximately 3 x 5 km area surrounding the MVCO node using a Reson 8125 focused multibeam sonar aboard the SAIC survey vessel Ocean Explorer. The 8125 is a newly developed multibeam sonar that operates at 455 kHz and uses dynamic focusing to compensate for the curvature of the wavefront in the near-field. By using a relatively long array, the system can achieve very high spatial resolution (0.5 degree beam width) and with the dynamic focusing, can operate in the near field. The real constraint on resolution using this system is the ability to position the soundings and thus three kinematic DGPS base stations were established on Martha?s Vineyard and three kinematic receivers were used on the survey vessel. The kinematic GPS positioning is also critical to the ability to do repeat surveys with an accuracy high enough to resolve small (less than 10 cm) seafloor changes. Also to aid in our ability to accurately position repeat surveys, divers jetted sonar reflectors into the seafloor to act as fiducials. A super high-resolution (4 m overlap) survey was conducted in a small area surrounding the MVCO node and mine burial sites, a slightly lower resolution survey (12 to 25 m overlap) in a box approximately 1 x 1 km surrounding the ?target box? and a lower resolution survey (25 to 40 m line overlap) in a 3 x 5 km region surrounding the 1 x 1 km box. The Reson 8125 produced approximately 1 gigabyte of data per hour. The bathymetric resolution we were able to achieve was beyond our expectations. The node site and all diver-emplaced reflectors were clearly identified Most amazingly, we are able to resolve fields of individual ripples that are less than 2 cm height. Of particular relevance to the mine burial program was our ability to resolve an instrumented mine that had been deployed earlier by NRL. This mine is buried in a scour depression and is only a few centimeters proud above the base of the depression

    Seafloor Characterization from Spatial Variation of Multibeam Backscatter vs. Grazing Angle

    Get PDF
    Backscatter vs. grazing angle, which can be extracted from multibeam backscatter data, depend on characteristics of the multibeam system and the angular responses of backscatter that are characteristic of different seafloor properties, such as sediment hardness and roughness. Changes in backscatter vs. grazing angle that are contributed by the multibeam system normally remain fixed over both space and time. Therefore, they can readily be determined and removed from backscatter data. The variation of backscatter vs. grazing angle due to the properties of sediments will vary from location to location, as sediment type changes. The sediment component of variability can be inferred using the redundant observations from different grazing angles in several small pieces of seafloor where the sediment property is uniform in any given piece of seafloor yet vary from one piece of the seafloor to another. Thanks to the multibeam survey (Roger Flood, State University of New York) at SAX 99 Project sponsored by Office of Naval Research (ONR), which had 800\% coverage in most of the survey area; there is a data set, which is suitable for investigating seafloor characterization. The investigation analyzed the spatial variation of the backscatter vs. grazing angle and compared that with ground truth sediment data. In this research, the 6.9 gigabytes raw multibeam data were cleaned using an automated outlier detection algorithm (Tianhang Hou, Lloyd Huff and Larry Mayer. 2001). Then, the surveyed area was equally divided into 52X78 rectangle working cells (4056), the side of each cell was about 20 meters. The backscatter vs. grazing angle of backscatter data for each cell is computed by averaging backscatter data by the corresponding beam numbers using all data with the same beam number from different survey lines. Systematic effects on the backscatter vs. grazing angle, caused by multibeam system hardware or software as well as system installation, were corrected in order to remove the asymmetric and skew effects. In order to easily evaluate the spatial variation of the backscatter vs. grazing angle, a graphic interface was developed. With a mouse click, the images based on different subsets of the data can be compared throughout the survey area. The subsets were created using specific beam numbers. These images for different beams show significant variations between nadir and off-nadir beams. These variations allow an interesting interpretation to be made of the images in light of seafloor characteristics, which were derived from ground truth data, such as sediment grain size, density and velocity

    Sensor-assisted Video Mapping of the Seafloor

    Get PDF
    In recent years video surveys have become an increasingly important ground-truthing of acousticseafloor characterization and benthic habitat mapping studies. However, the ground-truthing and detailed characterization provided by video are still typically done using sparse sample imagery supplemented by physical samples. Combining single video frames in a seamless mosaic can provide a tool by which imagery has significant areal coverage, while at the same time showing small fauna and biological features at mm resolution. The generation of such a mosaic is a challenging task due to height variations of the imaged terrain and decimeter scale knowledge of camera position. This paper discusses the current role of underwater video survey, and the potential for generating consistent, quantitative image maps using video data, accompanied by data that can be measured by auxiliary sensors with sufficient accuracy, such as camera tilt and heading, and their use in automated mosaicking techniques. The camera attitude data also provide the necessary information to support the development of a video collage. The collage provides a quick look at the large spatial scale features in a scene and can be used to pinpoint regions that are likely to yield useful information when rendered into high-resolution mosaics. It is proposed that high quality mosaics can be produced using consumer-grade cameras and low-cost sensors, thereby allowing for the economical scientific video surveys. A case study is presented with the results from benthic habitat mapping and the ground-truthing ofseafloor acoustic data using both real underwater imagery and simulations. A computer modeling of the process of video data acquisition (in particular on a non-flat terrain) allows for a better understanding of the main sources of error in mosaic generation and for the choice of near-optimal processing strategies. Various spatial patterns of video survey coverage are compared and it is shown that some patterns have certain advantages in the sense of accumulated error and overall mosaic accuracy

    Acoustic positioning and tracking in Portsmouth Harbour, New Hampshire

    Get PDF
    Portsmouth Harbor, New Hampshire, is frequently used as a testing area for multibeam and sidescan sonars, and is the location of numerous ground-truthing studies. Having the ability to accurately position underwater sensors is an important aspect of this type of work. However, underwater positioning in Portsmouth Harbor is challenging. It is relatively shallow, approximately one kilometer wide with depths of less than 25 meters. There is mixing between fresh river water and seawater, which is intensified by high currents and strong tides. This causes a very complicated spatial and temporal sound speed structure. Solutions that use the time-of-arrival of an acoustic pulse to estimate range will require very precise knowledge of the travel paths of the signal in order to separate out issues of multipath arrivals. An alternative solution is to use the phase measurements between closely spaced hydrophones to measure the bearing of an acoustic pinger. By using two bearing measurement devices that are widely separated, the intersection of the two bearings can be used to position the pinger. The advantage of this approach is that the sound speed only needs to be known at the location of the phase measurements. Both time-of-arrival and phase difference systems may encounter difficulties arising from horizontal refraction due to spatially varying sound speed. To ascertain which solution would be optimal in Portsmouth Harbor, the time-of-arrival and phase measurement approaches are being examined individually. Initial field tests have been conducted using a 40 kHz signal to look at bearing accuracy. Using hydrophones that are spaced 2/3 wavelengths apart, the bearing accuracy was found to be 1.25deg for angles up to 20deg from broadside with signal to noise ratios (SNR) greater than 15 dB. The results from the closely spaced hydrophones were used to resolve phase ambiguities, allowing finer bearing measurements to be made between hydrophones spaced 5 wavelengths apart. The fi- ne bearing measurements resulted in a bearing accuracy of 0.3deg for angles up to 20deg from broadside with SNR greater than 15 dB. Field tests planned for summer 2007 will include a more detailed investigation of how the environmental influences affect each of the measurement types including range, signal to noise ratio, currents, and sound speed structure

    Critical Evaluation of Bacteriophage to Prevent and Treat Colibacillosis in Poultry

    Get PDF
    There is a continuing need to find alternatives to antibiotics in animal and human medicine. Bacteriophages are viruses that infect and kill bacteria, with no known activity to plant and animal cells. We have conducted research to critically evaluate the efficacy of bacteriophage to both prevent and treat colibacillosis in poultry. Bacteriophages lytic to an Escherichia coli pathogenic to poultry were isolated from municipal waste water treatment plants and poultry processing plants. Two bacteriophage isolates were selected to use in studies designed to determine the efficacy of these bacteriophage to prevent and treat severe colibacillosis in poultry. Colibacillosis was induced by injecting 6 X 104 cfu of E. coli into the thoracic airsac when the birds were 1 week of age. Initial studies demonstrated that mortality was significantly reduced when the challenge culture was mixed with bacteriophage prior to challenging the birds. In subsequent studies, we have shown that an aerosol spray of bacteriophage given to the birds prior to this E. coli challenge can prevent the disease, and that an intramuscular injection of bacteriophage provides an effective treatment of this disease. We have demonstrated that bacteriophage can be used to both prevent and treat colibacillosis in poultry and may provide an effective alternative to antibiotic use in animal and human medicine

    On the Use of Historical Bathymetric Data to Determine Changes in Bathymetry: An Analysis of Errors and Application to Great Bay Estuary, NH

    Get PDF
    The depth measurements that are incorporated into bathymetric charts have associated errors with magnitudes depending on the survey circumstances and applied techniques. For this reason, combining and comparing depth measurements collected over many years with different techniques and standards is a difficult task which must be done with great caution. In this study we have developed an approach for comparing historical bathymetric surveys. Our methodology uses Monte Carlo modelling to account for the random error components inherited in the data due to positioning and depth measurement uncertainties

    The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles

    Get PDF
    Splashback refers to the process of matter that is accreting onto a dark matter halo reaching its first orbital apocenter and turning around in its orbit. The clustercentric radius at which this process occurs, r_(sp), defines a halo boundary that is connected to the dynamics of the cluster. A rapid decline in the halo profile is expected near r_(sp). We measure the galaxy number density and weak lensing mass profiles around REDMAPPER galaxy clusters in the first-year Dark Energy Survey (DES) data. For a cluster sample with mean M_(200m) mass ≈2.5 × 10^(14) M⊙, we find strong evidence of a splashback-like steepening of the galaxy density profile and measure r_(sp) = 1.13 ± 0.07 h^(−1) Mpc, consistent with the earlier Sloan Digital Sky Survey measurements of More et al. and Baxter et al. Moreover, our weak lensing measurement demonstrates for the first time the existence of a splashback-like steepening of the matter profile of galaxy clusters. We measure r_(sp) = 1.34 ± 0.21 h^(−1) Mpc from the weak lensing data, in good agreement with our galaxy density measurements. For different cluster and galaxy samples, we find that, consistent with ΛCDM simulations, r_(sp) scales with R_(200m) and does not evolve with redshift over the redshift range of 0.3–0.6. We also find that potential systematic effects associated with the REDMAPPER algorithm may impact the location of r_(sp). We discuss the progress needed to understand the systematic uncertainties and fully exploit forthcoming data from DES and future surveys, emphasizing the importance of more realistic mock catalogs and independent cluster samples
    • …
    corecore