1,430 research outputs found

    Evaluation of energy absorption of new concepts of aircraft composite subfloor intersections

    Get PDF
    Forty-one composite aircraft subfloor intersection specimens were tested to determine the effects of geometry and material on the energy absorbing behavior, failure characteristics, and post-crush structural integrity of the specimens. The intersections were constructed of twelve ply + or - 45 sub 6 laminates of either Kevlar 49/934 or AS-4/934 graphite-epoxy in heights of 4, 8, and 12 inches. The geometry of the specimens varied in the designs of the intersection attachment angle. Four different geometries were tested

    Analysis of the Space Shuttle Orbiter skin panels under simulated hydrodynamic loads

    Get PDF
    The Space Shuttle orbiter skin panels were analyzed under pressure loads simulating hydrodynamic loads to determine their capability to sustain a potential ditching and to determine pressures that typically would produce failures. Two Dynamic Crash Analysis of Structures (DYCAST) finite element models were used. One model was used to represent skin panels (bays) in the center body, while a second model was used to analyze a fuselage bay in the wing region of the orbiter. From an assessment of the DYCAST nonlinear computer results, it is concluded that the probability is extremely high that most, if not all, of the lower skin panels would rupture under ditching conditions. Extremely high pressure loads which are produced under hydrodynamic planning conditions far exceed the very low predicted failure pressures for the skin panels. Consequently, a ditching of the orbiter is not considered to have a high probability of success and should not be considered a means of emergency landing unless no other option exists

    An overview of the crash dynamics failure behavior of metal and composite aircraft structures

    Get PDF
    An overview of failure behavior results is presented from some of the crash dynamics research conducted with concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. Experimental and analytical data are presented that indicate some general trends in the failure behavior of a class of composite structures that includes fuselage panels, individual fuselage sections, fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame stringer structure. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models

    Feasiblity study for a 34 GHz (Ka band) gyroamplifier

    Get PDF
    The feasibility of using a gyroklystron power tube as the final amplifier in a 400 kW CW 34 GHz transmitter on the Goldstone Antenna is investigated. A conceptual design of the gyroklystron and the transmission line connecting it with the antenna feed horn is presented. The performance characteristics of the tube and transmission line are compared to the transmitter requirements for a deep space radar system. Areas of technical risk for a follow-on hardware development program for the gyroklystron amplifier and overmoded transmission line components are discussed

    Overview Of Structural Behavior and Occupant Responses from Crash Test of a Composite Airplane

    Get PDF
    As part of NASA's composite structures crash dynamics research, a general aviation aircraft with composite wing, fuselage and empennage (but with metal subfloor structure) was crash tested at the NASA Langley Research Center Impact Research Facility. The test was conducted to determine composite aircraft structural behavior for crash loading conditions and to provide a baseline for a similar aircraft test with a modified subfloor. Structural integrity and cabin volume were maintained. Lumbar loads for dummy occupants in energy absorbing seats wer substantially lower than those in standard aircraft seats; however, loads in the standard seats were much higher that those recorded under similar conditions for an all-metallic aircraft

    Measurements of pernitric acid at the South Pole during ISCAT 2000

    Get PDF
    The first measurements of pernitric acid at the South Pole were performed during the second Investigation of Sulfur Chemistry in the Antarctic Troposphere (ISCAT 2000). Observed HO2NO2 concentrations averaged 25 pptv. Simple steady-state calculations constrained by measurements show that the lifetime of pernitric acid was largely controlled by dry deposition, with thermal decomposition becoming increasingly important at warmer temperatures. We determined that the pernitric acid equilibrium constant is less uncertain than indicated in the literature. One consequence of pernitric acid deposition to the snow surface is that it is an important sink for both NOx and HOx. Another is that the photochemistry of HO2NO2 in the Antarctic snowpack may be a NOx source in addition to nitrate photolysis. This might be one of the important differences in snow photochemistry between the South Pole and warmer polar sites

    Modeling chemistry in and above snow at Summit, Greenland – Part 2: Impact of snowpack chemistry on the oxidation capacity of the boundary layer

    Get PDF
    The chemical composition of the boundary layer in snow covered regions is impacted by chemistry in the snowpack via uptake, processing, and emission of atmospheric trace gases. We use the coupled one-dimensional (1-D) snow chemistry and atmospheric boundary layer model MISTRA-SNOW to study the impact of snowpack chemistry on the oxidation capacity of the boundary layer. The model includes gas phase photochemistry and chemical reactions both in the interstitial air and the atmosphere. While it is acknowledged that the chemistry occurring at ice surfaces may consist of a true quasi-liquid layer and/or a concentrated brine layer, lack of additional knowledge requires that this chemistry be modeled as primarily aqueous chemistry occurring in a liquid-like layer (LLL) on snow grains. The model has been recently compared with BrO and NO data taken on 10 June–13 June 2008 as part of the Greenland Summit Halogen-HOx experiment (GSHOX). In the present study, we use the same focus period to investigate the influence of snowpack derived chemistry on OH and HOx + RO2 in the boundary layer. We compare model results with chemical ionization mass spectrometry (CIMS) measurements of the hydroxyl radical (OH) and of the hydroperoxyl radical (HO2) plus the sum of all organic peroxy radicals (RO2) taken at Summit during summer 2008. Using sensitivity runs we show that snowpack influenced nitrogen cycling and bromine chemistry both increase the oxidation capacity of the boundary layer and that together they increase the midday OH concentrations. Bromine chemistry increases the OH concentration by 10–18 % (10 % at noon LT), while snow sourced NOx increases OH concentrations by 20–50 % (27 % at noon LT). We show for the first time, using a coupled one dimensional snowpack-boundary layer model, that air-snow interactions impact the oxidation capacity of the boundary layer and that it is not possible to match measured OH levels without snowpack NOx and halogen emissions. Model predicted HONO compared with mistchamber measurements suggests there may be an unknown HONO source at Summit. Other model predicted HOx precursors, H2O2 and HCHO, compare well with measurements taken in summer 2000, which had lower levels than other years. Over 3 days, snow sourced NOx contributes an additional 2 ppb to boundary layer ozone production, while snow sourced bromine has the opposite effect and contributes 1 ppb to boundary layer ozone loss

    Effects of floor location on response of composite fuselage frames

    Get PDF
    Experimental and analytical results are presented which show the effect of floor placement on the structural response and strength of circular fuselage frames constructed of graphite-epoxy composite material. The research was conducted to study the behavior of conventionally designed advanced composite aircraft components. To achieve desired new designs which incorporate improved energy absorption capabilities requires an understanding of how these conventional designs behave under crash type loadings. Data are presented on the static behavior of the composite structure through photographs of the frame specimen, experimental strain distributions, and through analytical data from composite structural models. An understanding of this behavior can aid the dynamist in predicting the crash behavior of these structures and may assist the designer in achieving improved designs for energy absorption and crash behavior of future structures
    • …
    corecore