30 research outputs found

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Comparación de la comprensión lectora en alumnos de primer y segundo año de secundaria de centros educativos estatales y no estatales de Lima Metropolitana

    Get PDF
    Objectives: a. To study the reading comprehension development on first to secong grade  high school students. b. To analize the comprehension developmental level of first and second grade high school students considering public and private schools...Objetivos:a. Estudiar el desarrollo de la comprensión lectora en alumnos de primer y segundo año de secundaria. b. Analizar el nivel de desarrollo de la comprensión de los alumnos de centros educativos estatales y no estatales en primer y segundo año de secundaria..

    Chiquihuite Cave and America’s hidden limestone industries: a reply to Chatters et al.

    No full text
    This paper is a reply to Chatters et al. (2021. “Evaluating Claims of Early Human Occupation at Chiquihuite Cave, Mexico.” PaleoAmerica 8, doi:10.1080/20555563.2021.1940441), in which they raise a large number of doubts about the legitimacy of our claims of earlier-than-expected human presence at Chiquihuite Cave, in northern Zacatecas, Mexico, mainly questioning the artificial nature of the lithic assemblage and the integrity of our geological contexts. We respond to their main topics of concern, contributing arguments in defense of the human origin of the artifacts. We also include 10 examples of stone tools, with full descriptions and photographs, focusing on modified flakes that bear indicators of use-wear and intentional modification

    Chiquihuite Cave and America’s hidden limestone industries: a reply to Chatters et al.

    No full text
    This paper is a reply to Chatters et al. (2021. “Evaluating Claims of Early Human Occupation at Chiquihuite Cave, Mexico.” PaleoAmerica 8, doi:10.1080/20555563.2021.1940441), in which they raise a large number of doubts about the legitimacy of our claims of earlier-than-expected human presence at Chiquihuite Cave, in northern Zacatecas, Mexico, mainly questioning the artificial nature of the lithic assemblage and the integrity of our geological contexts. We respond to their main topics of concern, contributing arguments in defense of the human origin of the artifacts. We also include 10 examples of stone tools, with full descriptions and photographs, focusing on modified flakes that bear indicators of use-wear and intentional modification

    Evidence of human occupation in Mexico around the Last Glacial Maximum.

    Get PDF
    The initial colonization of the Americas remains a highly debated topic1, and the exact timing of the first arrivals is unknown. The earliest archaeological record of Mexico-which holds a key geographical position in the Americas-is poorly known and understudied. Historically, the region has remained on the periphery of research focused on the first American populations2. However, recent investigations provide reliable evidence of a human presence in the northwest region of Mexico3,4, the Chiapas Highlands5, Central Mexico6 and the Caribbean coast7-9 during the Late Pleistocene and Early Holocene epochs. Here we present results of recent excavations at Chiquihuite Cave-a high-altitude site in central-northern Mexico-that corroborate previous findings in the Americas10-17of cultural evidence that dates to the Last Glacial Maximum (26,500-19,000 years ago)18, and which push back dates for human dispersal to the region possibly as early as 33,000-31,000 years ago. The site yielded about 1,900 stone artefacts within a 3-m-deep stratified sequence, revealing a previously unknown lithic industry that underwent only minor changes over millennia. More than 50 radiocarbon and luminescence dates provide chronological control, and genetic, palaeoenvironmental and chemical data document the changing environments in which the occupants lived. Our results provide new evidence for the antiquity of humans in the Americas, illustrate the cultural diversity of the earliest dispersal groups (which predate those of the Clovis culture) and open new directions of research

    Data Acquisition Architecture and Online Processing System for the HAWC gamma-ray observatory

    No full text
    The High Altitude Water Cherenkov observatory (HAWC) is an air shower array devised for TeV gamma-ray astronomy. HAWC is located at an altitude of 4100 m a.s.l. in Sierra Negra, Mexico. HAWC consists of 300 Water Cherenkov Detectors, each instrumented with 4 photomultiplier tubes (PMTs). HAWC re-uses the Front-End Boards from the Milagro experiment to receive the PMT signals. These boards are used in combination with Time to Digital Converters (TDCs) to record the time and the amount of light in each PMT hit (light flash). A set of VME TDC modules (128 channels each) is operated in a continuous (dead time free) mode. The TDCs are read out via the VME bus by Single-Board Computers (SBCs), which in turn are connected to a gigabit Ethernet network. The complete system produces ~ 500 MB/s of raw data. A high-throughput data processing system has been designed and built to enable real-time data analysis. The system relies on off-the-shelf hardware components, an open-source software technology for data transfers (ZeroMQ) and a custom software framework for data analysis (AERIE). Multiple trigger and reconstruction algorithms can be combined and run on blocks of data in a parallel fashion, producing a set of output data streams which can be analyzed in real time with minimal latency (< 5 s). This paper provides an overview of the hardware set-up and an in-depth description of the software design, covering both the TDC data acquisition system and the real-time data processing system. The performance of these systems is also discussed.Comment: 14 pages, 3 figures, submitted to Nucl. Instrum. Meth.

    Data acquisition architecture and online processing system for the HAWC gamma-ray observatory

    No full text
    The High Altitude Water Cherenkov observatory (HAWC) is an air shower array devised for TeV gamma-ray astronomy. HAWC is located at an altitude of 4100 m a.s.l. in Sierra Negra, Mexico. HAWC consists of 300 Water Cherenkov Detectors, each instrumented with 4 photomultiplier tubes (PMTs). HAWC re-uses the Front-End Boards from the Milagro experiment to receive the PMT signals. These boards are used in combination with Time to Digital Converters (TDCs) to record the time and the amount of light in each PMT hit (light flash). A set of VME TDC modules (128 channels each) is operated in a continuous (dead time free) mode. The TDCs are read out via the VME bus by Single-Board Computers (SBCs), which in turn are connected to a gigabit Ethernet network. The complete system produces approximate to 500 MB/s of raw data. A high-throughput data processing system has been designed and built to enable real-time data analysis. The system relies on off-the-shelf hardware components, an open-source software technology for data transfers (ZeroMQ) and a custom software framework for data analysis (AERIE). Multiple trigger and reconstruction algorithms can be combined and run on blocks of data in a parallel fashion, producing a set of output data streams which can be analyzed in real time with minimal latency (<5 s). This paper provides an overview of the hardware set-up and an in-depth description of the software design, covering both the TDC data acquisition system and the real-time data processing system. The performance of these systems is also discussed. (C) 2018 Elsevier B.V. All rights reserved
    corecore