3,393 research outputs found

    The Nernst effect and the boundaries of the Fermi liquid picture

    Full text link
    Following the observation of an anomalous Nernst signal in cuprates, the Nernst effect was explored in a variety of metals and superconductors during the past few years. This paper reviews the results obtained during this exploration, focusing on the Nernst response of normal quasi-particles as opposed to the one generated by superconducting vortices or by short-lived Cooper pairs. Contrary to what has been often assumed, the so-called Sondheimer cancelation does not imply a negligible Nernst response in a Fermi liquid. In fact, the amplitude of the Nernst response measured in various metals in the low-temperature limit is scattered over six orders of magnitude. According to the data, this amplitude is roughly set by the ratio of electron mobility to Fermi energy in agreement with the implications of the semi-classical transport theory.Comment: Final version, Topical review for JPC

    Silicon nitride: A ceramic material with outstanding resistance to thermal shock and corrosion

    Get PDF
    The known physical, mechanical and chemical properties of reaction-sintered silicon nitride are summarized. This material deserves interest especially because of its unusually good resistance to thermal shock and corrosion at high temperatures. Two types are distinguished: reaction-sintered (porous) and hot-pressed (dense) Si3N4. Only the reaction-sintered material which is being produced today in large scale as crucibles, pipes, nozzles and tiles is considered

    Molecular characterisation of congenital myasthenic syndromes in Southern Brazil

    Get PDF
    Objective To perform genetic testing of patients with congenital myasthenic syndromes (CMS) from the Southern Brazilian state of Parana. Patients and methods Twenty-five CMS patients from 18 independent families were included in the study. Known CMS genes were sequenced and restriction digest for the mutation RAPSN p.N88K was performed in all patients. Results We identified recessive mutations of CHRNE in ten families, mutations in DOK7 in three families and mutations in COLQ, CHRNA1 and CHRNB1 in one family each. The mutation CHRNE c. 70insG was found in six families. We have repeatedly identified this mutation in patients from Spain and Portugal and haplotype studies indicate that CHRNE c. 70insG derives from a common ancestor. Conclusions Recessive mutations in CHRNE are the major cause of CMS in Southern Brazil with a common mutation introduced by Hispanic settlers. The second most common cause is mutations in DOK7. The minimum prevalence of CMS in Parana is 0.18/100 000

    Molecular characterisation of congenital myasthenic syndromes in Southern Brazil

    Get PDF
    Objective To perform genetic testing of patients with congenital myasthenic syndromes (CMS) from the Southern Brazilian state of Parana. Patients and methods Twenty-five CMS patients from 18 independent families were included in the study. Known CMS genes were sequenced and restriction digest for the mutation RAPSN p.N88K was performed in all patients. Results We identified recessive mutations of CHRNE in ten families, mutations in DOK7 in three families and mutations in COLQ, CHRNA1 and CHRNB1 in one family each. The mutation CHRNE c. 70insG was found in six families. We have repeatedly identified this mutation in patients from Spain and Portugal and haplotype studies indicate that CHRNE c. 70insG derives from a common ancestor. Conclusions Recessive mutations in CHRNE are the major cause of CMS in Southern Brazil with a common mutation introduced by Hispanic settlers. The second most common cause is mutations in DOK7. The minimum prevalence of CMS in Parana is 0.18/100 000

    Bandgap narrowing in Mn doped GaAs probed by room-temperature photoluminescence

    Full text link
    The electronic band structure of the (Ga,Mn)As system has been one of the most intriguing problems in solid state physics over the past two decades. Determination of the band structure evolution with increasing Mn concentration is a key issue to understand the origin of ferromagnetism. Here we present room temperature photoluminescence and ellipsometry measurements of Ga_{100%-x}Mn_{x}As alloy. The up-shift of the valence-band is proven by the red shift of the room temperature near band gap emission from the Ga_{100%-x}Mn_{x}As alloy with increasing Mn content. It is shown that even a doping by 0.02 at.% of Mn affects the valence-band edge and it merges with the impurity band for a Mn concentration as low as 0.6 at.%. Both X-ray diffraction pattern and high resolution cross-sectional TEM images confirmed full recrystallization of the implanted layer and GaMnAs alloy formation.Comment: 24 pages, 7 figures, accepted at Phys. Rev. B 201

    The RNA Helicase DDX6 Controls Cellular Plasticity by Modulating P-Body Homeostasis

    Get PDF
    Post-transcriptional mechanisms have the potential to influence complex changes in gene expression, yet their role in cell fate transitions remains largely unexplored. Here, we show that suppression of the RNA helicase DDX6 endows human and mouse primed embryonic stem cells (ESCs) with a differentiation-resistant, “hyper-pluripotent” state, which readily reprograms to a naive state resembling the preimplantation embryo. We further demonstrate that DDX6 plays a key role in adult progenitors where it controls the balance between self-renewal and differentiation in a context-dependent manner. Mechanistically, DDX6 mediates the translational suppression of target mRNAs in P-bodies. Upon loss of DDX6 activity, P-bodies dissolve and release mRNAs encoding fate-instructive transcription and chromatin factors that re-enter the ribosome pool. Increased translation of these targets impacts cell fate by rewiring the enhancer, heterochromatin, and DNA methylation landscapes of undifferentiated cell types. Collectively, our data establish a link between P-body homeostasis, chromatin organization, and stem cell potency

    Structural Characterization of a High-Temperature, Ionic Conducting Ceramic using Perturbed Angular Correlation Spectroscopy

    Get PDF
    Perturbed angular correlation (PAC) spectroscopy has been used to characterize several structural aspects of a high-temperature, ionic conducting ceramic, CaZr3.95Hf0.05P6O24. Hafnium was introduced into the material to provide the PAC probe nuclei, 181Hf/181Ta, which were located primarily at Zr sites. PAC measurements were made over a range of temperatures from 77 to 1180 K, and they have been analyzed and interpreted using several simple models. The distorted octahedral crystal field at the Zr site produced a (low-frequency) static electric quadrupole interaction which can be accurately described by the point-charge model. But, the temperature dependence of the associated electric field gradient (EFG) cannot be described accurately by purely static considerations via the point-charge model and high-temperature x-ray diffraction data. Although a high-frequency static interaction was also observed, the measurements were not sufficiently accurate to identify its origin unambiguously. Some of the high-temperature measurements show evidence of a time-varying interaction, which may result from Ca2+-ion jumping. But, jump frequencies derived classically from high-temperature electrical dc conductivity measurements are too low to agree with those indicated by the PAC data. However, the dc conductivity measurements support a simple model of thermally activated Ca2+-ion transport. The temperature dependence of the EFG (corresponding to the low-frequency interaction) was used to determine an effective Debye-Waller factor. As a result of using this approach to analyze this type of PAC data, this factor was shown also to agree qualitatively with the predictions of the Debye crystal model, although significant theoretical limitations were encountered. These particular results suggest that the PAC technique may provide new insights into understanding advanced ceramic materials
    corecore