8,181 research outputs found
First limits on the 3-200 keV X-ray spectrum of the quiet Sun using RHESSI
We present the first results using the Reuven Ramaty High-Energy Solar
Spectroscopic Imager, RHESSI, to observe solar X-ray emission not associated
with active regions, sunspots or flares (the quiet Sun). Using a newly
developed chopping technique (fan-beam modulation) during seven periods of
offpointing between June 2005 to October 2006, we obtained upper limits over
3-200 keV for the quietest times when the GOES12 1-8A flux fell below
Wm. These values are smaller than previous limits in the 17-120 keV
range and extend them to both lower and higher energies. The limit in 3-6 keV
is consistent with a coronal temperature MK. For quiet Sun periods
when the GOES12 1-8A background flux was between Wm and
Wm, the RHESSI 3-6 keV flux correlates to this as a power-law,
with an index of . The power-law correlation for microflares has
a steeper index of . We also discuss the possibility of
observing quiet Sun X-rays due to solar axions and use the RHESSI quiet Sun
limits to estimate the axion-to-photon coupling constant for two different
axion emission scenarios.Comment: 4 pages, 3 figures, Accepted by ApJ letter
Uncertainty Evaluation of Computational Model Used to Support the Integrated Powerhead Demonstration Project
NASA and the U.S. Air Force are working on a joint project to develop a new hydrogen-fueled, full-flow, staged combustion rocket engine. The initial testing and modeling work for the Integrated Powerhead Demonstrator (IPD) project is being performed by NASA Marshall and Stennis Space Centers. A key factor in the testing of this engine is the ability to predict and measure the transient fluid flow during engine start and shutdown phases of operation. A model built by NASA Marshall in the ROCket Engine Transient Simulation (ROCETS) program is used to predict transient engine fluid flows. The model is initially calibrated to data from previous tests on the Stennis E1 test stand. The model is then used to predict the next run. Data from this run can then be used to recalibrate the model providing a tool to guide the test program in incremental steps to reduce the risk to the prototype engine. In this paper, they define this type of model as a calibrated model. This paper proposes a method to estimate the uncertainty of a model calibrated to a set of experimental test data. The method is similar to that used in the calibration of experiment instrumentation. For the IPD example used in this paper, the model uncertainty is determined for both LOX and LH flow rates using previous data. The successful use of this model is then demonstrated to predict another similar test run within the uncertainty bounds. The paper summarizes the uncertainty methodology when a model is continually recalibrated with new test data. The methodology is general and can be applied to other calibrated models
Multichannel quantum-defect theory for ultracold atom-ion collisions
We develop an analytical model for ultracold atom-ion collisions using the
multichannel quantum-defect formalism. The model is based on the analytical
solutions of the r^-4 long-range potential and on the application of a frame
transformation between asymptotic and molecular bases. This approach allows the
description of the atom-ion interaction in the ultracold domain in terms of
three parameters only: the singlet and triplet scattering lengths, assumed to
be independent of the relative motion angular momentum, and the lead dispersion
coefficient of the asymptotic potential. We also introduce corrections to the
scattering lengths that improve the accuracy of our quantum-defect model for
higher order partial waves, a particularly important result for an accurate
description of shape and Feshbach resonances at finite temperature. The theory
is applied to the system composed of a 40Ca+ ion and a Na atom, and compared to
numerical coupled-channel calculations carried out using ab initio potentials.
For this particular system, we investigate the spectrum of bound states, the
rate of charge-transfer processes, and the collision rates in the presence of
magnetic Feshbach resonances at zero and finite temperature.Comment: 39 pages, 21 figure
Legislative strengthening meets party support in international assistance: a closer relationship?
Recent reports recommend that international efforts to help strengthen legislatures in emerging democracies should work more closely with support for building stronger political parties and competitive party systems. This article locates the recommendations within international assistance more generally and reviews the arguments. It explores problems that must be addressed if the recommendations are to be implemented effectively. The article argues that an alternative, issue-based approach to strengthening legislatures and closer links with civil society could gain more traction. However, that is directed more centrally at promoting good governance for the purpose of furthering development than at democratisation goals sought by party aid and legislative strengtheners in the democracy assistance industry
Flare energetics
In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested
Economies of space and the school geography curriculum
This paper is about the images of economic space that are found in school curricula. It suggests the importance for educators of evaluating these representations in terms of the messages they contain about how social processes operate. The paper uses school geography texts in Britain since the 1970s to illustrate the different ways in which economic space has been represented to students, before exploring some alternative resources that could be used to provide a wider range of representations of economic space. The paper highlights the continued importance of understanding the politics of school knowledge
Highly variable friction and slip observed at Antarctic ice stream bed
The slip of glaciers over the underlying bed is the dominant mechanism governing the migration of ice from land into the oceans, with accelerating slip contributing to sea-level rise. Yet glacier slip remains poorly understood, and observational constraints are sparse. Here we use passive seismic observations to measure both frictional shear stress and slip at the bed of the Rutford Ice Stream in Antarctica using 100,000 repetitive stick-slip icequakes. We find that basal shear stresses and slip rates vary from 10 to 10âPa and 0.2 to 1.5âm per day, respectively. Friction and slip vary temporally over the order of hours, and spatially over 10s of metres, due to corresponding variations in effective normal stress and iceâbed interface material. Our findings suggest that the bed is substantially more complex than currently assumed in ice stream models and that basal effective normal stresses may be significantly higher than previously thought. Our observations can provide constraints on the basal boundary conditions for ice-dynamics models. This is critical for constraining the primary contribution of ice mass loss in Antarctica and hence for reducing uncertainty in sea-level rise projections
Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature
The biochemical processes of cell membranes are sensitive to the geometry of the lipid bilayer. We show how plasmonic "nanowells" provide label-free real-time analysis of molecules on membranes with detection of preferential binding at negative curvature. It is demonstrated that norovirus accumulate in invaginations due to multivalent interactions with glycosphingolipids
Collision Dynamics and Solvation of Water Molecules in a Liquid Methanol Film
Environmental molecular beam experiments are used to examine water
interactions with liquid methanol films at temperatures from 170 K to 190 K. We
find that water molecules with 0.32 eV incident kinetic energy are efficiently
trapped by the liquid methanol. The scattering process is characterized by an
efficient loss of energy to surface modes with a minor component of the
incident beam that is inelastically scattered. Thermal desorption of water
molecules has a well characterized Arrhenius form with an activation energy of
0.47{\pm}0.11 eV and pre-exponential factor of 4.6 {\times} 10^(15{\pm}3)
s^(-1). We also observe a temperature dependent incorporation of incident water
into the methanol layer. The implication for fundamental studies and
environmental applications is that even an alcohol as simple as methanol can
exhibit complex and temperature dependent surfactant behavior.Comment: 8 pages, 5 figure
- âŠ