916 research outputs found

    Distinct phosphorylation clusters determines the signalling outcome of the free fatty acid receptor FFA4/GPR120

    Get PDF
    It is established that long-chain free fatty acids including ω-3 fatty acids mediate an array of biological responses through members of the free fatty acid receptor family, which includes FFA4. However, the signalling mechanisms and modes of regulation of this receptor class remain unclear. Here we employ mass spectrometry to determine that phosphorylation of mouse (m)FFAR4 occurs at five serine and threonine residues clustered in two separable regions of the C terminal tail, designated cluster 1 (Thr347, Thr349 and Ser350) and cluster 2 (Ser357 and Ser361). Mutation of these phospho-acceptor sites to alanine completely prevented phosphorylation of mFFA4 but did not limit receptor coupling to ERK1/2 activation. Rather an inhibitor of Gq/11 proteins completely prevented receptor signalling to ERK1/2. In contrast, the recruitment of arrestin 3, receptor internalization and activation of Akt were regulated by mFFA4 phosphorylation. The analysis of mFFA4 phosphorylation-dependent signalling was extended further by selective mutations of the phospho-acceptor sites. Mutations within cluster 2 did not affect agonist activation of Akt but instead significantly compromised receptor internalization and arrestin 3 recruitment. Distinctly, mutation of the phospho-acceptor sites within cluster 1 had no effect on receptor internalization and a less extensive effect on arrestin 3 recruitment, but significantly uncoupled the receptor from Akt activation. These unique observations define differential effects on signalling mediated by phosphorylation at distinct locations. This hallmark feature supports the possibility that the signalling outcome of mFFA4 activation can be determined by the pattern of phosphorylation (phosphorylation barcode) at the C-terminus of the receptor

    Fine root dynamics and trace gas fluxes in two lowland tropical forest soils

    Get PDF
    Fine root dynamics have the potential to contribute significantly to ecosystem-scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root dynamics on two soil types in a lowland moist Amazonian forest, and determined the effect of root decay on rates of C and N trace gas fluxes. Root production averaged 229 ( 35) and 153 ( 27) gm 2 yr 1 for years 1 and 2 of the study, respectively, and did not vary significantly with soil texture. Root decay was sensitive to soil texture with faster rates in the clay soil (k5 0.96 year 1) than in the sandy loam soil (k5 0.61 year 1),leading to greater standing stocks of dead roots in the sandy loam. Rates of nitrous oxide (N2O) emissions were significantly greater in the clay soil (13 1ngNcm 2 h 1) than in the sandy loam (1.4 0.2 ngNcm 2 h 1). Root mortality and decay following trenching doubled rates of N2O emissions in the clay and tripled them in sandy loam over a 1-year period. Trenching also increased nitric oxide fluxes, which were greater in the sandy loam than in the clay. We used trenching (clay only) and a mass balance approach to estimate the root contribution to soil respiration. In clay soil root respiration was 264–380 gCm 2 yr 1, accounting for 24% to 35% of the total soil CO2 efflux. Estimates were similar using both approaches. In sandy loam, root respiration rates were slightly higher and more variable (521 206 gCm2 yr 1) and contributed 35% of the total soil respiration. Our results show that soil heterotrophs strongly dominate soil respiration in this forest, regardless of soil texture. Our results also suggest that fine root mortality and decomposition associated with disturbance and land-use change can contribute significantly to increased rates of nitrogen trace gas emissions

    Medical student wellbeing - a consensus statement from Australia and New Zealand

    Get PDF
    Abstract Background Medical student wellbeing – a consensus statement from Australia and New Zealand outlines recommendations for optimising medical student wellbeing within medical schools in our region. Worldwide, medical schools have responsibilities to respond to concerns about student psychological, social and physical wellbeing, but guidance for medical schools is limited. To address this gap, this statement clarifies key concepts and issues related to wellbeing and provides recommendations for educational program design to promote both learning and student wellbeing. The recommendations focus on student selection; learning, teaching and assessment; learning environment; and staff development. Examples of educational initiatives from the evidence-base are provided, emphasising proactive and preventive approaches to student wellbeing. Main recommendations The consensus statement provides specific recommendations for medical schools to consider at all stages of program design and implementation. These are:Design curricula that promote peer support and progressive levels of challenge to students.Employ strategies to promote positive outcomes from stress and to help others in need.Design assessment tasks to foster wellbeing as well as learning.Provide mental health promotion and suicide prevention initiatives.Provide physical health promotion initiatives.Ensure safe and health-promoting cultures for learning in on-campus and clinical settings.Train staff on student wellbeing and how to manage wellbeing concerns. Conclusion A broad integrated approach to improving student wellbeing within medical school programs is recommended. Medical schools should work cooperatively with student and trainee groups, and partner with clinical services and other training bodies to foster safe practices and cultures. Initiatives should aim to assist students to develop adaptive responses to stressful situations so that graduates are prepared for the realities of the workplace. Multi-institutional, longitudinal collaborative research in Australia and New Zealand is needed to close critical gaps in the evidence needed by medical schools in our region

    C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations

    Get PDF
    AbstractThe anosmin-1 protein family regulates cell migration, axon guidance, and branching, by mechanisms that are not well understood. We show that the C. elegans anosmin-1 ortholog KAL-1 promotes migrations of ventral neuroblasts prior to epidermal enclosure. KAL-1 does not modulate FGF signaling in neuroblast migration and acts in parallel to other neuroblast migration pathways. Defects in heparan sulfate (HS) synthesis or in specific HS modifications disrupt neuroblast migrations and affect the KAL-1 pathway. KAL-1 binds the cell surface HS proteoglycans syndecan/SDN-1 and glypican/GPN-1. This interaction is mediated via HS side chains and requires specific HS modifications. SDN-1 and GPN-1 are expressed in ventral neuroblasts and have redundant roles in KAL-1-dependent neuroblast migrations. Our findings suggest that KAL-1 interacts with multiple HSPGs to promote cell migration

    A phylogeny of Antirrhinum reveals parallel evolution of alpine morphology

    Get PDF
    * Parallel evolution of similar morphologies in closely related lineages provides insight into the repeatability and predictability of evolution. In the genus Antirrhinum (snapdragons), as in other plants, a suite of morphological characters are associated with adaptation to alpine environments. * We tested for parallel trait evolution in Antirrhinum by investigating phylogenetic relationships using restriction-site associated DNA (RAD) sequencing. We then associated phenotypic information to our phylogeny to reconstruct the patterns of morphological evolution and related this to evidence for hybridisation between emergent lineages. * Phylogenetic analyses showed that the alpine character syndrome is present in multiple groups, suggesting that Antirrhinum has repeatedly colonised alpine habitats. Dispersal to novel environments happened in the presence of intraspecific and interspecific gene flow. * We found support for a model of parallel evolution in Antirrhinum. Hybridisation in natural populations, and a complex genetic architecture underlying the alpine morphology syndrome, support an important role of natural selection in maintaining species divergence in the face of gene flow

    Mechanistic and genetic basis of single-strand templated repair at Cas12a-induced DNA breaks in Chlamydomonas reinhardtii

    Get PDF
    Single-stranded oligodeoxynucleotides (ssODNs) are widely used as DNA repair templates inCRISPR/Cas precision genome editing. However, the underlying mechanisms of single-strandtemplated DNA repair (SSTR) are inadequately understood, constraining rational improve-ments to precision editing. Here we study SSTR at CRISPR/Cas12a-induced DNA double-strand breaks (DSBs) in the eukaryotic model green microalgaChlamydomonas reinhardtii.Wedemonstrate that ssODNs physically incorporate into the genome during SSTR at Cas12a-induced DSBs. This process is genetically independent of the Rad51-dependent homologousrecombination and Fanconi anemia pathways, is strongly antagonized by non-homologousend-joining, and is mediated almost entirely by the alternative end-joining enzyme poly-meraseθ. Thesefindings suggest differences in SSTR betweenC. reinhardtiiand animals. Ourwork illustrates the promising potentially ofC. reinhardtiias a model organism for studyingnuclear DNA repair
    corecore