19 research outputs found

    The Quantum Hall Effect: Unified Scaling Theory and Quasi-particles at the Edge

    Full text link
    We address two fundamental issues in the physics of the quantum Hall effect: a unified description of scaling behavior of conductances in the integral and fractional regimes, and a quasi-particle formulation of the chiral Luttinger Liquids that describe the dynamics of edge excitations in the fractional regime.Comment: 11 pages, LateX, 2 figures (not included, available from the authors), to be published in Proceedings of the International Summer School on Strongly Correlated Electron Systems, Lajos Kossuth University, Debrecen, Hungary, Sept 199

    Disordered Critical Wave functions in Random Bond Models in Two Dimensions -- Random Lattice Fermions at E=0E=0 without Doubling

    Get PDF
    Random bond Hamiltonians of the π\pi flux state on the square lattice are investigated. It has a special symmetry and all states are paired except the ones with zero energy. Because of this, there are always zero-modes. The states near E=0E=0 are described by massless Dirac fermions. For the zero-mode, we can construct a random lattice fermion without a doubling and quite large systems ( up to 801×801801 \times 801) are treated numerically. We clearly demonstrate that the zero-mode is given by a critical wave function. Its multifractal behavior is also compared with the effective field theory.Comment: 4 pages, 2 postscript figure

    Quantized Anomalous Hall Effect in Two-Dimensional Ferromagnets - Quantum Hall Effect from Metal -

    Full text link
    We study the effect of disorder on the anomalous Hall effect (AHE) in two-dimensional ferromagnets. The topological nature of AHE leads to the integer quantum Hall effect from a metal, i.e., the quantization of σxy\sigma_{xy} induced by the localization except for the few extended states carrying Chern number. Extensive numerical study on a model reveals that Pruisken's two-parameter scaling theory holds even when the system has no gap with the overlapping multibands and without the uniform magnetic field. Therefore the condition for the quantized AHE is given only by the Hall conductivity σxy\sigma_{xy} without the quantum correction, i.e., σxy>e2/(2h)|\sigma_{xy}| > e^2/(2h).Comment: 5 pages, 4 figures, REVTe

    One-Dimensional Extended States in Partially Disordered Planar Systems

    Full text link
    We obtain analytically a continuum of one-dimensional ballistic extended states in a two-dimensional disordered system, which consists of compactly coupled random and pure square lattices. The extended states give a marginal metallic phase with finite conductivity σ0=2e2/h\sigma_{0}=2e^2/h in a wide energy range, whose boundaries define the mobility edges of a first-order metal-insulator transition. We show current-voltage duality, H/TH_{\parallel}/T scaling of the conductivity in parallel magnetic field HH_{\parallel} and non-Fermi liquid properties when long-range electron-electron interactions are included.Comment: 4 pages, revtex file, 3 postscript file

    Fredholm Indices and the Phase Diagram of Quantum Hall Systems

    Full text link
    The quantized Hall conductance in a plateau is related to the index of a Fredholm operator. In this paper we describe the generic ``phase diagram'' of Fredholm indices associated with bounded and Toeplitz operators. We discuss the possible relevance of our results to the phase diagram of disordered integer quantum Hall systems.Comment: 25 pages, including 7 embedded figures. The mathematical content of this paper is similar to our previous paper math-ph/0003003, but the physical analysis is ne

    Energy spectra, wavefunctions and quantum diffusion for quasiperiodic systems

    Full text link
    We study energy spectra, eigenstates and quantum diffusion for one- and two-dimensional quasiperiodic tight-binding models. As our one-dimensional model system we choose the silver mean or `octonacci' chain. The two-dimensional labyrinth tiling, which is related to the octagonal tiling, is derived from a product of two octonacci chains. This makes it possible to treat rather large systems numerically. For the octonacci chain, one finds singular continuous energy spectra and critical eigenstates which is the typical behaviour for one-dimensional Schr"odinger operators based on substitution sequences. The energy spectra for the labyrinth tiling can, depending on the strength of the quasiperiodic modulation, be either band-like or fractal-like. However, the eigenstates are multifractal. The temporal spreading of a wavepacket is described in terms of the autocorrelation function C(t) and the mean square displacement d(t). In all cases, we observe power laws for C(t) and d(t) with exponents -delta and beta, respectively. For the octonacci chain, 0<delta<1, whereas for the labyrinth tiling a crossover is observed from delta=1 to 0<delta<1 with increasing modulation strength. Corresponding to the multifractal eigenstates, we obtain anomalous diffusion with 0<beta<1 for both systems. Moreover, we find that the behaviour of C(t) and d(t) is independent of the shape and the location of the initial wavepacket. We use our results to check several relations between the diffusion exponent beta and the fractal dimensions of energy spectra and eigenstates that were proposed in the literature.Comment: 24 pages, REVTeX, 10 PostScript figures included, major revision, new results adde

    Quasi-localized states in disordered metals and non-analyticity of the level curvature distribution function

    Full text link
    It is shown that the quasi-localized states in weakly disordered systems can lead to the non-analytical distribution of level curvatures. In 2D systems the distribution function P(K) has a branching point at K=0. In quasi-1D systems the non-analyticity at K=0 is very weak, and in 3D metals it is absent at all. Such a behavior confirms the conjecture that the branching at K=0 is due to the multi-fractality of wave functions and thus is a generic feature of all critical eigenstates. The relationsip between the branching power and the multi-fractality exponent η(2)\eta(2) is derived.Comment: 4 pages, LATE

    Weak levitation of 2D delocalized states in a magnetic field.

    Full text link
    The deviation of the energy position of a delocalized state from the center of Landau level is studied in the framework of the Chalker-Coddington model. It is demonstrated that introducing a weak Landau level mixing results in a shift of the delocalized state up in energy. The mechanism of a levitation is a neighboring - Landau level - assisted resonant tunneling which ``shunts'' the saddle-points. The magnitude of levitation is shown to be independent of the Landau level number.Comment: Latex file (12 pages) + 3 Postscript figures

    THE ANOMALOUS DIFFUSION IN HIGH MAGNETIC FIELD AND THE QUASIPARTICLE DENSITY OF STATES

    Full text link
    We consider a disordered two-dimensional electronic system in the limit of high magnetic field at the metal-insulator transition. Density of states close to the Fermi level acquires a divergent correction to the lowest order in electron-electron interaction and shows a new power-law dependence on the energy, with the power given by the anomalous diffusion exponent η\eta. This should be observable in the tunneling experiment with double-well GaAs heterostructure of the mobility 104V/s\propto 10^{4}V/s at temperatures of 10mK\propto 10 mK and voltages of 1μV\propto 1 \mu V.Comment: 12 pages, LATEX, one figure available at request, accepted for publication in Phys. Rev.

    Chiral Random Matrix Model for Critical Statistics

    Full text link
    We propose a random matrix model that interpolates between the chiral random matrix ensembles and the chiral Poisson ensemble. By mapping this model on a non-interacting Fermi-gas we show that for energy differences less than a critical energy EcE_c the spectral correlations are given by chiral Random Matrix Theory whereas for energy differences larger than EcE_c the number variance shows a linear dependence on the energy difference with a slope that depends on the parameters of the model. If the parameters are scaled such that the slope remains fixed in the thermodynamic limit, this model provides a description of QCD Dirac spectra in the universality class of critical statistics. In this way a good description of QCD Dirac spectra for gauge field configurations given by a liquid of instantons is obtained.Comment: 21 pages, 3 figures, Latex; added two references and minor correction
    corecore