57 research outputs found

    Peptide‐Based Coacervate‐Core Vesicles with Semipermeable Membranes

    Get PDF
    Coacervates droplets have long been considered as potential protocells to mimic living cells. However, these droplets lack a membrane and are prone to coalescence, limiting their ability to survive, interact, and organize into higher-order assemblies. This work shows that tyrosine-rich peptide conjugates can undergo liquid–liquid phase separation in a well-defined pH window and transform into stable membrane-enclosed protocells by enzymatic oxidation and cross-linking at the liquid–liquid interface. The oxidation of the tyrosine-rich peptides into dityrosine creates a semipermeable, flexible membrane around the coacervates with tunable thickness, which displays strong intrinsic fluorescence, and stabilizes the coacervate protocells against coalescence. The membranes have an effective molecular weight cut-off of 2.5 kDa, as determined from the partitioning of small dyes and labeled peptides, RNA, and polymers into the membrane-enclosed coacervate protocells. Flicker spectroscopy reveals a membrane bending rigidity of only 0.1kBT, which is substantially lower than phospholipid bilayers despite a larger membrane thickness. Finally, it is shown that enzymes can be stably encapsulated inside the protocells and be supplied with substrates from outside, which opens the way for these membrane-bound compartments to be used as molecularly crowded artificial cells capable of communication or as a vehicle for drug delivery

    Nichtkovalenter Aufbau von Nanostrukturen durch Nutzen aus koordinationschemischer Methoden und von Wasserstoffbrückenbindungen

    Get PDF
    Rosetten, die durch Wasserstoffbrückenbindungen zusammengehalten werden (rechts), können aus komplexchemisch hergestellten Metallodendrimeren synthetisiert werden. Somit werden zwei orthogonale, nichtkovalente Wechselwirkungen (Metall-Ligand- und Wasserstoffbrückenbindungen) zum Aufbau dieser nanometergroßen Dendrimere (M ca. 7-28 kDa) genutzt

    Noise Minimization in Cell-Free Gene Expression

    Get PDF
    Biochemical reactions that involve small numbers of molecules are accompanied by a degree of inherent randomness that results in noisy reaction outcomes. In synthetic biology, the ability to minimize noise particularly during the reconstitution of future synthetic protocells is an outstanding challenge to secure robust and reproducible behavior. Here we show that by encapsulation of a bacterial cell-free gene expression system in water-in-oil droplets, in vitro-synthesized MazF reduces cell-free gene expression noise &gt;2-fold. With stochastic simulations we identify that this noise minimization acts through both increased degradation and the autoregulatory feedback of MazF. Specifically, we find that the expression of MazF enhances the degradation rate of mRNA up to 18-fold in a sequence-dependent manner. This sequence specificity of MazF would allow targeted noise control, making it ideal to integrate into synthetic gene networks. Therefore, including MazF production in synthetic biology can significantly minimize gene expression noise, impacting future design principles of more complex cell-free gene circuits.</p

    3D microniches reveal the importance of cell size and shape

    Get PDF
    Contains fulltext : 187738.pdf (publisher's version ) (Open Access)12 p

    Self-assembly of hyperbranched spheres

    Get PDF
    A new type of building block with two coordinatively unsaturated palladium centres has been described that self-assembles in nitromethane solution and disassembles when acetonitrile is added. The resulting hyperbranched, organopalladium spheres have a remarkably narrow size distribution as was evidenced by light-scattering, AFM and TEM measurements. Variation of the structure of the building blocks showed the possibility to vary the size of the self-assembled spheres between 100 and 400 nm
    corecore