Figure 4a shows the AFM image of one partially obscured {001}_h face of EMT. The hexagonal nature of the face with edge length about 0.6 µm is immediately apparent. Though the overall terrace topology on the crystal surface is not as well defined as for FAU, both a hexagonal nature and a diminishing terrace width towards the edge of the crystal are evident. This hexagonal terrace morphology is a consequence of the symmetry generated along the [001], direction by the ABAB stacking of faujasite layers. Although individually the A and B layers have threefold symmetry (see Scheme 1) they are rotated with respect to one another by 60° thereby generating a pseudo sixfold axis. Section analysis again reveals that the terraces are approximately 1.5 nm thick and this thickness is highly uniform. The growth terraces of the EMT structure are less well defined than those of the FAU structure which is a reflection of the larger number of defects in EMT than FAU.^[7] ## Experimental Procedure The zeolites were synthesized in the system $10SiO_2:1.0Al_2O_3:2.4Na_2O:140H_2O:1.0$ crown ether. The sources of material were 40 wt % colloidal silica (HS-40 Ludox); 40 wt % sodium aluminate solution; [15]crown-5 and [18]crown-6 (Aldrich). Gels were aged for two days at room temperature followed by crystallization in Teflon bottles for eight days at 95 °C. AFM images were recorded on a Nanoscope Multimode Microscope from Digital Instruments operating in TappingMode. Samples were secured on an adhesive surface to prevent lateral movement. A first order planefit was conducted on the images in the x and y directions to level the crystal terraces, and simulated illumination is used to emphasize the crystal steps. Dark areas around crystal edges are due to the surface topography possessing a greater slope than the side of the tip. Thus, these areas contain information on the tip shape only and do not contain topographical information. Received: October 30, 1995 [Z 8513 IE] German version: Angew. Chem. 1996, 108, 1301-1304 Keywords: atomic force microscopy · crystallization · zeolites - [1] E. Delprato, L. Delmotte, J. L. Guth, L. Huve, Zeolites 1990, 10, 546-552. - [2] C. Baerlocher, L. B. McCusker, R. Chiapetta, Microparous Mater. 1994, 2, 269-280. - [3] D. W. Breck, Zeolite Molecular Sieves, Wiley, New York, 1974, p.56. - [4] J. M. Thomas, M. Audier, J. Klinowski, J. Chem. Soc. Chem. Commun. 1981, 1221-1222; M. M. J. Treacy, J. M. Newsam, R. A. Beyerlein, M. E. Leonowicz, D. E. W. Vaughan, ibid. 1986, 1211-1213; J. M. Newsam, M. M. J. Treacy, D. E. W. Vaughan, K. G. Stohmaier, W. J. Mortier, ibid. 1989, 493-495; J. A. Martens, P. A. Jacobs, S. Cartlidge, Zeolites 1989, 9, 423-427; S. Ernst, G. T. Kokotailo, J. Weitkamp, ibid. 1987, 7, 180-182; M. M. J. Treacy, J. M. Newsam, D. E. W. Vaughan, R. A. Beyerlein, S. B. Rice, C. B. deGruyter, Mater. Res. Soc. Symp. Proc. 1988, 111, 177-190; D. E. W. Vaughan (Exxon), Eur. Pat. Appl. 315461, 1988 (Chem. Abstr. 108, 115126m); D. E. W. Vaughan, M. G. Barret (Exxon), US-A 4333859, 1982 (Chem. Abstr. 98, 75170 n); J. Jiric (Mobil Oil), ibid. 3972983, 1976 (Chem. Abstr. 86, 92954r), ibid. 4021331, 1977 (Chem. Abstr. 86, 195783 p); V. Fülöp, G. Borbély, H. K. Beyer, S. Ernst, J. Weitkamp, J. Chem. Soc. Faraday Trans. 1 1989, 85, 2127-2139. - [5] M. W. Anderson, K. S. Pachis, F. Prébin, S. W. Carr, O. Terasaki, T. Ohsuna, V. Alfredsson, J. Chem Soc. Chem Commun. 1991, 1660-1664. - [6] O. Terasaki, T. Ohsuna, V. Alfredsson, J.-O. Bovin, D. Watanabe, S. W. Carr, M. W. Anderson, Chem. Mater. 1993, 5, 452-458. - [7] T. Ohsuna, O. Terasaki, V. Alfredsson, J.-O. Bovin, D. Watanabe, S. W. Carr, M. W. Anderson, *Proc. R. Soc. London A*, in press. - [8] J. P. Arhancet, M. E. Davis, Chem. Mater. 1991, 3, 567-569. - [9] S. L. Burkett, M. E. Davis, *Microporous Mater.* 1993, 1, 265-282. - [10] A. L. Weisenhorn, J. E. MacDougall, S. A. C. Gould, S. D. Cox, W. S. Wise, J. Massie, P. Maivald, V. B. Elings, G. D. Stucky, P. K. Hansma, Science 1990, 247, 1330-1333; J. E. MacDougall, S. D. Cox, G. D. Stucky, A. L. Weisenhorn, P. K. Hansma, W. S. Wise, Zeolites 1991, 11, 429-433; M. Komiyama, T. Yashima, Jpn J. Appl. Phys. Part 1 1994, 33, 3761-3763. - [11] S. Manne, J. P Cleveland, G. D. Stucky, P. K. Hansma, J. Cryst. Growth 1993, 130, 333-340; S. D. Durbin, W. E. Carlson, ibid. 1992, 122, 71-79. - [12] P. E. Hillner, A. J. Gratz, S. Manne, P. K. Hansma, Geology 1992, 20, 359-362; P. E. Hillner, S. Manne, A. J. Gratz, P. K. Hansma, Ultramicroscopy 1992, 42, 1387-1393; A. J. Gratz, S. Manne, P. K. Hansma, Science 1991, 251, 1343-1346. - [13] W. K. Burton, N. Cabrera, F. C. Frank, Phil. Trans. R. Soc. A 1951, 243, 299-358. ## Controlled Assembly of Nanosized Metallodendrimers** Wilhelm T. S. Huck, Frank C. J. M. van Veggel,* and David N. Reinhoudt* There is considerable interest in the synthesis of well-defined structures of nanometer dimensions.[1] These structures can be constructed by formation of covalent bonds, but this requires multistep synthesis.^[2] Therefore, various other strategies have been developed that rely on self-assembly through noncovalent interactions, for example hydrogen bonds. Whitesides et al.^[3] obtained stable rosettelike structures constructed of melamine and barbituric acid units held together by strong hydrogen bonds. The nanotubular assemblies prepared by Ghadiri et al. [4] are another beautiful example of hydrogen-bonded assemblies. Dative bonds to transition metals can also be employed in selfassembly. Lehn et al. have applied the coordination of oligopyridines to transition metals to form triple helices, ladder polymers, and molecular grids.^[5] Previously, we have described the self-assembly of small aggregates and ribbonlike polymers using the uranyl cation. [6] In this paper we describe the synthesis of metallodendrimers by controlled assembly. Dendrimers are attractive, nanosize compounds with very specific architectures.^[7,8] Dendrimers can be synthesized by following either a convergent or a divergent route,^[9] in which an increasing number of new covalent bonds are formed in each generation. A few dendrimers containing transition metals have been reported.^[10] Van Koten et al.^[11] have used metalated dendrimers as homogeneous catalysts. Balzani and co-workers reported the synthesis of metallodendrimers containing transition metals in every generation, which relied on sequential reactions on the metal centers and protection/deprotection of ligands.^[12] In contrast, Achar and Puddephat built dendrimers by oxidative additions to Pt^[1] complexes.^[13] We have recently described the synthesis of large organopalladium spheres by "genuine" self-assembly.^[14] Now we report here that we can control this process and use this method for the synthesis of first-, second-, and third-generation metallodendrimers. Our approach is based on controlled assembly of building blocks that contain all the necessary information. We make use of the coordination chemistry of Pd^{II} and have combined in building block **BB-Cl** two kinetically inert tridentate "pincertype" ligands and one labile coordinating cyano group (Scheme 1). The nucleus G_0 has in this case C_3 symmetry with three Pd centers. The temporary protection of the metal center by a strongly coordinating Cl^- ion prevents coordination by cyano groups. Further growth of Pd complex G_0 is achieved by replacing the Cl^- ion for a noncoordinating BF_4^- ion, by reaction with $AgBF_4$. Subsequent addition of three equivalents of the protected building block BB-Cl yields the next generation dendrimer G_1 . By repeating this sequence twice it is possible to build the third-generation metallodendrimer G_3 . The synthesis of BB-Cl and G_0 is outlined in Scheme 2. The S-C-S pincer ligand was prepared in seven steps from dihydroxy- e-mail: orgchem@ct.utwente.nl ^[*] Dr. Ir. F. C. J. M. van Veggel, Prof. Dr. Ir. D. N. Reinhoudt, Drs. W. T. S. Huck Laboratory of Organic Chemistry and MESA Research Institute University of Twente P. O. Box 217, NL-7500 AE Enschede (Netherlands) Fax: Int. code +(53)4894645 ^{**]} We thank the Dutch Foundation for Chemical Research (SON) for financial support. We are grateful to Prof. N. Nibberink and R. Fokkens (Institute of Mass Spectrometry, University of Amsterdam) for ES-MS measurements. $$\begin{array}{c} \text{CN} \\ \text{Br} \\ \text{Br} \\ \text{PhS} \\$$ Scheme 1. Graphical representation of the controlled assembly process. Scheme 2. Synthesis of dendrimer building blocks. isophthalic acid.^[14] The pincer ligands were coupled to a tribromomesitylene spacer to afford the nucleus L_2 , or to dibromomonocyanomesitylene to yield the dendrimer building block L₁. Simple cyclopalladation of L₁ and L₂ with $[Pd(CH_3CN)_4(BF_4)_2]^{[15]}$ gave in quantitative yield the bis- and trispalladium complexes, which were directly converted into the chloride complexes BB-Cl and G_0 , respectively, by stirring with aqueous NaCl. The palladation is quantitative and occurs exclusively at the position activated by both S donor atoms, as can be deduced from 1HNMR spectroscopy. A broad singlet at δ = 4.4 for the CH₂S protons reflects the slow conformational interconversion of the five-membered Pd cycle, and the absence of a singlet at $\delta = 6.85$ indicates complete cyclopalladation. After purification by column chromatography (silica gel, eluting with CH₂Cl₂/MeOH 97/3) BB-Cl and G₀ were obtained in yields of 70 and 40%, respectively. Nucleus G_0 was activated by stirring with three equivalents of $AgBF_4$ in CH_2Cl_2 /nitromethane (1/1), and three equivalents of **BB-Cl** were added to form the assembly G_1 . Repeating the same procedure yielded in a very simple way metallodendrimers G_2 and G_3 . These complexes were purified by filtration over hyflo and column chromatography (silica gel reversed phase, eluting with nitromethane) to remove the precipitated silver chloride. The yellow-colored metallodendrimers were obtained as a single fraction in quantitative yield after chromatography. The synthesis of an *n*th generation metallodendrimer is a one-pot procedure, because intermediate generations need not be isolated. The assembly process is controlled by the repetitive addition of $AgBF_4$ and BB-Cl. Dendrimers G_1-G_3 were fully characterized by ¹H and ¹³C NMR and FT-IR spectroscopy, ^[16] electrospray mass spectrometry (ES-MS), and elemental analysis (Table 1). The ¹H NMR spectra of G_1-G_3 are remarkably simple because of the high symmetry of the nucleus and the similarity of the building blocks. The formation of the desired compounds can be deduced from the ratios of the intensities of the signals of the CH_2CN and CH_2O protons, which is 1:3 for G_1 , 3:7 for G_2 , and 1:2 for G_3 . The signals in the ¹H NMR spectrum of G_3 show some broadening, indicating the restricted motion of the inner generations. The ¹³C NMR spectra show no shifts on going from G_0 to G_3 . [17] Molecular masses were determined by ES-MS. The transformed ES mass spectra (Fig. 1)^[18] show signals at m/z 1516.2 Table 1. Selected physical data for G_0-G_3 . **G**₀: M.p. 164~166 °C; ¹H NMR (CDCl₃): $\delta = 7.81$ (m, 12 H; Ar₈H), 7.39 (s, 3 H; Ar_H), 7.35 (m, 18 H; Ar₈H), 6.63 (s, 6 H; Ar_{Pd}H), 4.93 (s, 6 H; CH₂O), 4.53 (br. s, 12 H; CH₂S); ¹³C NMR (CDCl₃): $\delta = 156.5$, 150.2, 137.7, 132.3, 131.4, 129.8, 129.7, 109.2, 69.8, 51.7; ES-MS: m/z: 1516.2 [M - Cl]*. Analysis: calcd for $C_{69}H_{57}O_3S_6Pd_3Cl_3\cdot H_2O$: C 52.78, H 3.79; found: C 52.51, H 3.70. **G**₁: M.p. 154–157 °C; ¹H NMR (CD₃NO₂): $\delta = 7.63$ (m, 36 H; Ar₈H), 7.45 (s, 3 H; Ar_H), 7.40 (s, 9 H; Ar_H), 7.29 (m, 54 H; Ar₈H), 6.62 (s, 18 H; Ar_{Pd}H), 4.93 (s, 18 H; CH₂O), 4.49 (br. s, 36 H; CH₂S), 3.78 (s, 6 H; CH₂CN); ¹³C NMR (CD₃NO₂, 80 °C): $\delta = 153.1$, 147.0, 145.8, 134.9, 128.3, 127.9, 126.4, 125.8, 106.1, 46.2, 19.8; ES-MS: m/z: 4759.5 [M - 2Cl - 2BF₄]⁺. Analysis calcd for C₂₁₉H₁₇₇B₃N₃O₉F₁₂S₁₈Cl₆Pd₉·CH₃NO₂: C 51.47, H 3.58, N 1.11, Cl 4.20; found: C 51.99, H 3.74, N 1.33, Cl 4.09. **G**₂: M.p. 148–152 °C; ¹H NMR (CD₃NO₂): δ = 7.75 (m, 84 H; Ar₈H), 7.4 (m, 156 H; ArH), 6.75 (s, 42 H; Ar_{Pd}H), 5.00 (s, 42 H; CH₂O), 4.54 (br. s, 84 H; CH₂S), 3.89 (s, 18 H; CH₂CN); ¹³C NMR (CD₃NO₂, 80 °C): δ = 153.1, 147.0, 145.8, 134.9, 128.2, 127.9, 126.5, 125.8, 122.8, 106.1, 66.2, 46.2, 19.8; ES-MS: m/z: 11 907.0 [M] ⁺. Analysis calcd for C₅₁₉H₄₂₆B₉N₉O₂₁F₃₆S₄₂Cl₁₂Pd₂₁·2 CH₃NO₂: C 51.99, H 3.62, N 1.29, Cl 3.53; found: C 51.74, H 3.75, N 1.86, Cl 3.16. G₃: M.p. 139–142 °C; ¹H NMR (CD₃NO₂): $\delta = 7.7$ (m, 180 H; Ar₈H), 7.5 (m, 336 H; ArH), 6.8 (s, 90 H; Ar_{Pd}H), 5.0 (s, 90 H; CH₂O), 4.5 (br. s, 180 H; CH₂S), 3.9 (s, 42 H; CH₂CN); ¹³C NMR (CD₃NO₂, 80 °C): $\delta = 153.1$, 147.0, 145.8, 134.9, 128.2, 127.9, 126.5, 125.8, 122.8, 106.1, 66.2, 46.2, 19.8; ES-MS: m/z: 24032 [M - 19 BF₄] + . Analysis calcd for C₁₁₁₉H₉₁₈B₂₁N₂₁O₄₅F₈₄S₉₀Cl₂₄Pd₄₅·10 CH₃NO₂: C 51.16, H 3.60, N 1.74, Cl 3.22; found: C 51.16, H 3.61, N 2.22, Cl 3.21. Fig. 1. ES mass spectra for $G_1 - G_3$. $([\mathbf{G_0} - \mathbf{Cl}]^+)$, 4783.5, $([\mathbf{G_1} - \mathbf{Cl} - 2\mathbf{BF_4}]^+)$, 11907.0 $([\mathbf{G_2}]^+)$ and $24\,030.2$ ([G₃ - 19 BF₄]⁺). The loss of anions takes place inside the mass spectrometer, generating the multiply charged ions needed for detection and calculation of the molecular weight.[19] Molecular mechanics calculations^[20] were performed on G_0-G_3 . The square-planar coordination environment of the Pd centers is well preserved. It is clear that after the second generation the structure of the dendrimer becomes quite entangled (Fig. 2). Fig. 2. Optimized structures of $G_0 - G_3$. We have shown that organometallic structures of nanometer dimensions can now be constructed in a very simple and controlled way. This method of controlled assembly provides a new and versatile tool for dendrimer synthesis. The method allows large variation in the metal in each generation, the coordinating ligands, and the structure of the nucleus. > Received: December 29, 1995 [Z 8690 IE] German version: Angew. Chem. 1996, 108, 1304-1306 Keywords: dendrimers · palladium complexes · supramolecular chemistry - [1] Review: G. Ozin, Adv. Mater. 1992, 15, 612-648. - [2] For the synthesis of a receptor molecule with a nanosize cavity see: P. Timmerman, W. Verboom, F. C. J. M. van Veggel, W. P. van Hoorn, D. N. Reinhoudt, Angew, Chem. 1994, 106, 1313-1316; Angew. Chem. Int. Ed. Engl. 1994, 33, 1292 - 1295. - [3] J. P. Mathias, E. E. Simanek, G. M. Whitesides, J. Am. Chem. Soc. 1994, 116, 4326-4340. - [4] N. Khazanovich, J. R. Granja, D. E. McRee, R. A. Milligan, M. R. Ghadiri, J. Am. Chem. Soc. 1994, 116, 6011-6012. - [5] J.-M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995, pp. 139-197, and references therein. - [6] D. M. Rudkevich, W. Verboom, Z. Brzøzka, M. J. Palys, W. P. R. V. Stauthamer, G. J. van Hummel, S. M. Franken, S. Harkema, J. F. J. Engbersen, D. N. Reinhoudt, J. Am. Chem. Soc. 1994, 116, 4341-4351. - [7] D. A. Tomalia, A. M. Naylor, W. A. Goddard III, Angew. Chem. 1990, 102, 119-156; Angew. Chem. Int. Ed. Eng. 1990, 29, 138-175. - [8] J. F. G. A. Jansen, E. M. M. de Brabander-van den Berg, E. W. Meijer, Science **1994**, *266*, 1226–1229. - [9] C. J. Hawker, J. M. J. Fréchet, J. Am. Chem. Soc. 1990, 112, 7638-7642. - [10] Y. H. Liao, J. R. Moss, J. Chem. Soc. Chem. Commun. 1993, 1774-1777; G. R. Newkome, F. Cardullo, E. C. Constable, C. N. Moorefield, A. M. W. Cargill Thompson, ibid. 1993, 925-927; M. F. Ottaviani, S. Bossmann, N. J. Turro, D. A. Tomalia, J. Am. Chem. Soc. 1994, 116, 661-671; A. Miedaner, C. J. Curits, R. M. Barkley, D. L. Dubois, *Inorg. Chem.* 1994, 33, 5483-5498; G. R. Newkome, R. Guther, C. N. Moorefield, F. Cardullo, L. Echegoyen, E. Peréz-Cordero, H. Luftmann, Angew. Chem. 1995, 107, 2159-2162; Angew. Chem. Int. Ed. Engl. 1995, 34, 2023-2026. - [11] J. W. J. Knapen, A. W. van der Made, J. C. de Wilde, P. W. N. M. van Leeuwen, P. Wijkens, D. M. Grove, G. van Koten, *Nature* 1994, 372, 659-662. - [12] S. Campagna, G. Denti, S. Serroni, A. Juris, M. Venturi, V. Ricevuto, V. Balzani, Chem. Eur. J. 1995, 1, 211–221. - [13] S. Achar, R. J. Puddephat, Angew. Chem. 1994, 106, 895-897; Angew. Chem. Int. Ed. Engl. 1994, 33, 847-849. - [14] W. T. S. Huck, F. C. J. M. van Veggel, B. L. Kropman, D. H. A. Blank, E. G. Keim, M. M. A. Smithers, D. N. Reinhoudt, J. Am. Chem. Soc. 1995, 117, 8293-8294. - [15] S. J. Loeb, G. K. H. Shimizu, J. Chem. Soc. Chem. Commun. 1993, 1395-1397. - [16] Coordination of the cyano group is deduced from the characteristic shift from 2252 cm⁻¹ (free $C \equiv N$) to 2290 cm⁻¹ upon coordination. B. N. Storhoff, H. C. Lewis, Coord. Chem. Rev. 1977, 23, 1-23. - [17] M. H. P. van Genderen, M. W. P. L. Baars, J. C. M. van Hest, E. M. M. de Brabander-van den Berg, E. W. Meijer, Recl. Trav. Chim. Pays-Bas 1994, 113, 573 – 574. - [18] The signals at lower m/z values in the spectrum of G_2 correspond to species after the respective loss of one, two, and three dendrimer building blocks and corresponding anions. - [19] Examples of loss of counterions are known from literature: E. Leize, A. van Dorsselaer, R. Krämer, J.-M. Lehn, J. Chem. Soc. Chem. Commun. 1993, 990-993; G. Hopfgarter, C. Piguet, J. D. Henion, A. F. Williams, Helv. Chim. Acta 1993, 76, 1759-1766. - [20] Universal Force Field in the Cerius² program package: A. K. Rappé, C. J. Cascwit, K. S. Colwell, W. A. Goddard, III, W. M. Skiff, J. Am. Chem. Soc. **1992**, 114, 10024–10035. ## Molecular Boxes Based on Calix[4]arene **Double Rosettes**** Remko H. Vreekamp, John P. M. van Duynhoven, Martin Hubert, Willem Verboom, and David N. Reinhoudt* The construction of noncovalently bonded, well-defined aggregates has received increasing attention over the last few years. The study of molecular self-assembly is expected to provide information on how interactions between molecular functionalities lead to entities with new shapes and functions. The shapes of recently described ensembles range from boxes^[1, 2] and channels^[3] to more complex three-dimensional networks and other discrete aggregates.[4-6] Reported molecular boxes based on noncovalent interactions all have rather small cavities, since they result from the dimerization of two molecules with concave structures.^[2] Recently we prepared receptors with large hydrophobic cavities by the covalent combination of calix[4] arenes and resorcin[4] arenes. [7] The successful synthesis [*] Prof. Dr. ir. D. N. Reinhoudt, Dr. ir. R. H. Vreekamp, M. Hubert, Dr. J. P. M. van Duynhoven Laboratory of Chemical Analysis, University of Twente [**] We gratefully acknowledge financial support from Akzo Nobel Central Research b.v. Dr. W. Verboom Laboratory of Organic Chemistry and MESA Research Institute University of Twente P. O. Box 217, NL-7500 AE Enschede (The Netherlands) Fax: Int. code +(53)4894645e-mail: orgchem@ct.utwente.nl